Lösung von Zusatzaufgabe 7.3 S: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 10: Zeile 10:
 
Schritt 2:<math>\ OA^{-} := \left\{ {P|\operatorname(Zw) (P, O, A) }    \right\}  \cup\left\{ {O} \right\}</math> <br />
 
Schritt 2:<math>\ OA^{-} := \left\{ {P|\operatorname(Zw) (P, O, A) }    \right\}  \cup\left\{ {O} \right\}</math> <br />
 
Schritt 1 und 2 jeweils aufgrund der Definition II.5 (Halbgerade, bzw. Strahl) <br />
 
Schritt 1 und 2 jeweils aufgrund der Definition II.5 (Halbgerade, bzw. Strahl) <br />
 +
 +
Schritt 3: <math>OA^+ \cap OA^-=\left\{ {0} \right\}</math>  aufgrund von (1) und (2)<br />
 +
 +
Ist dies schon ausreichend? Muss noch genau gezeigt werden, dass kein weiterer Punkt P in der Schnittmenge auftritt oder ist dies durch die Zwischenrelationen schon drin?<br />--[[Benutzer:Thommy|Thommy]] 16:53, 14. Jun. 2012 (CEST)

Version vom 14. Juni 2012, 15:53 Uhr

7.3.PNG
Beweis folgt..
--Tchu Tcha Tcha 20:18, 12. Jun. 2012 (CEST)


Vorraussetzung: \exists g; \exists A:A\in g;\exists O:O\in g; A\neq O
Behauptung: \ OA^{+} \cap \ OA^{-} = \left\{ {O} \right\}

Ich möchte zunächst zeigen welche Punkte zur Halbgeraden \ OA^{+} bzw. OA^- gehören:
Schritt 1:\ OA^{+}:= \left\{ {P|\operatorname(Zw) (O, P, A) \vee \operatorname(Zw) (O, A, P)  } \right\} \cup \left\{ {O,A} \right\}
Schritt 2:\ OA^{-} := \left\{ {P|\operatorname(Zw) (P, O, A) }    \right\}  \cup\left\{ {O} \right\}
Schritt 1 und 2 jeweils aufgrund der Definition II.5 (Halbgerade, bzw. Strahl)

Schritt 3: OA^+ \cap OA^-=\left\{ {0} \right\} aufgrund von (1) und (2)

Ist dies schon ausreichend? Muss noch genau gezeigt werden, dass kein weiterer Punkt P in der Schnittmenge auftritt oder ist dies durch die Zwischenrelationen schon drin?
--Thommy 16:53, 14. Jun. 2012 (CEST)