Benutzer:HecklF: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
HecklF (Diskussion | Beiträge) |
HecklF (Diskussion | Beiträge) |
||
Zeile 1: | Zeile 1: | ||
+ | =Das Innere eines Dreiecks= | ||
+ | Seien ABC drei nichtkollineare Punkte der Ebene <math>\epsilon</math>. Das Innere des Dreiecks ABC kann mittels folgender Applikation dargestellt werden: | ||
+ | <br /> | ||
+ | <ggb_applet width="750" height="407" version="4.0" ggbBase64="UEsDBBQACAAIAGSwz0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAGSwz0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VtbU9tIFn7O/Iouvy6W+35JmUwlJJkwQ5KpSnZra99kqzEKsuRIMuCp+fF7ulu+g8HmMgYKaEl91Jfzndsn2d1fr4YZurBllRb5YYtEuIVs3i+SNB8ctsb1aVu3fn3zS3dgi4HtlTE6LcphXB+2uJNMk8OWIVZQJeO26jPe5kartuF9006EjG1sKbdctBC6qtLXefElHtpqFPftt/6ZHcYnRT+u/cRndT163elcXl5G06miohx0BoNedFUlLQTLzKvDVnPwGoZbuumSeXGKMen89/NJGL6d5lUd533bQm4L4/TNL6+6l2meFJfoMk3qM9gw07SFzmw6OINNKc5bqOOkRqCRke3X6YWt4N6FU7/pejhqebE4d/2vwhHKZvtpoSS9SBNbHrZwRKhWRmtOqVDCKNVCRZnavG5kSTNnZzpa9yK1l2FYd+RnhIXVRZH1Yjci+vtvRDHF6MA1JDQUGilDFw7XMAsNDQ0PjQgyPNzOgygPMjzIcNZCF2mV9jJ72DqNswpUmOanJcA3O6/qSWb9epoL892TA9hTlf4FwgyDnQSdw3WMD9yfhD/uOjrLmyQLs9bleMtJp1MSJuXd56T32imbTar0+pxU3LBPuWHSsPE7bVQs6Bam8r/+b21GtmmbqzOG8/tNKPmTbLHbmfpKt3EPVJ052cZ8ajusnMMwg4Rxdk+QAOeQCsxcIGKgURSBOyAiEBdwSjSSrlWIKejgiCGNnBxhyHuH0PCPKz+YRAIGc1cVOCUiMBFHgiHinYojcCXkHROclDKQEAIJuMlNT6gbgknEJZwxjTis0fmkIiDI4EY4h+kpYgQxdzNRiEok3XiEO1+X2i0dhqRIYiSJGxDcGlw6uDPIa8TcbmSjrjQfjeslFfWHyfSwLkYzLEAaAtI87IUAtRQVX3WzuGczyBTfHJIIXcSZ8wg/0WmR12gKIg3XBmU8Okv71Tdb13BXhX7EF/FJXNurjyBdTef2sv0ir/4si/qoyMbDvEKoX2R4tuYiIwvHdLZqOGELHXyxQyx0yIVjde28BfSgcWVh/qKspuJxkhw7iXloAE1+zbPJu9LG56MiXd5Gt+OTTteO+1mapHH+HzBWN4vTC5rnIBevpjlIKDNdSVEm3yYVmDC6+p8tC4hVkJ8XfyD6TJoebJa7YMSqHzvnE3i5ByLB5IYuEma2FzOE4is73+ygdJ69cHJcvSuy+SW//6N4VI9LXz7A8kq3qbf5ILPeRny4hdzcP+8VV9+aaB3G+j4ZwRkOK+gNvN4RxAYqoHwYNG0vtF7GLW0mhb0M9hJ4am1pMusnhnoJ3/ZC66XAfMPSmq2S6TYJnk6TVj6i4VbjN9No5YzfZfpxntYn05M67Z83WyXhhi/jYc/OTGh5TPJQY3Y7KzbWPbdlbrPGpAHMcTGugocuWHti++kQTkNHo5LYwfVvWEC4mthBaacLz3xpFhTme/Gisa5d9kN9LIvhcX7xHWxhZQHdznSV3apfpiNnc6gHaeDczq0qSasYskiyeJ/zQdh632ULUE/tVAPeOa7PCgD7Y1ZIQCuByAKXnf9ldgj1Fqq9jXkznen6rS/knFJR0fsBwW2W/0L/HDXovtbevGXG2egsdsVes/MsnthySRd+vM9FsqohAMBvAxx95KtFgHhkbbCOsGI4GMGA3qmWYhUovUJXsISIQr6dHLbaNMJw9Fco5UMp67brfG0pPoerK4CBFQVN3aKzd/uls100JiMTFIYjSh9dYUfPX2Es4tprjEQPY2D9YjiM8wTlviQ8gTjcmlcoMXaeiWLijC0oZlxPO+IwVDPAmupdSJ9pNr5F88upP0mDllxWb6SLzbjg3VGZ67ZNIkdDJ45Wu1rAaZdFQrO1JFVD/XQOLLHymbRucqY/+JQmifW1c0jiP/NwSxUyRzocZWk/rTfD8Kc322Uc4jUA3m8GYNn2368jsJztrjd+QkPe9+0+OABECi2xwYpwZoxWlDQRhEVUEKyZwRJTAcfqEfzjbsB82AaYDy8EGAKlL4eyGUvGuTZMNZ4kKIMrRmoN/x8oK66Ckk0GRb4Cy/sQtz5AQ92Dm1WQoEDLoAImQSwJYo5cAHXpQQOspQ8N8JWP0ABV+e02VMMqprDNxr8xdODNoeNhoyV1qr82XrJtbOXmVFvZgTubLTK5e8i/2zp3j+sqUoororXiEDuIkCGDmgiMVRqllOZaYyO8bQodQfzAjMEtGlMuNwT/WxDcFPy9LWbOn47zGkiE9VX0Ojc4t3bkSNnX/HsZ55V78BtkFjjHHRGx+4PIqu51KGquQwog4YRHDGulNYUoAoH9pSDS2xtEVhUf6qBrcQJAmNERXNRMUmUY9L8YRPp7g8haePKIXIOTcxAagY9gTRTTWlCu+LMFZLk4+rgTY5MBDNf0QrNzYTS+SrM0LifLy1/CiURUEahHlTCSGkpCdqE84gyyCAW4GKXGsEent7/tv7LaEDeYkBRMFwzVWXFIxTKSQkjCoJ7nkuqnpbZHa7Xh6RbU9vS+1PbnU1BbFvFG1REF3rTwEyI6wXBdkIXr+8B5T9eQ+bQNtfr0QqiVgKBPMaQBo7DUzC0rpAKhIUEwpY2EavVhnp/tAsrxNqAcvxBQ3BNLTh1B4OAtHFMyLWElxHtYJpFcQPh/mLh/F8b7KYSz41sYLw1iZ0EsDYx3EBjvj8B4fw+M94+dGC/9JxjvjUGUYLoWRvk21nL32vFst9rx5nXuXjuKiBko1ok2ghMFdWKwTREJILVKYkYhkJjmkXubQ4AxDKxZCEJAYtPzzv2uHlchSfcGklXVh2ixBlQTxKEgopRKxowwQnD9fOv5VUQGe4NI+zrlT9aRCsUoI1BCCcKJFExhxl/OQ4gf+4PIqupl8xRiFaiGHwgCHAvcA2NwFSqeb9harpB+338eB4hIIrDmTGJwCU6a997gJERjgApiloAqyDz+W/A/dqsnn1RdlEREUgN2DeFECxa0RSNKMCRexsHWuX6UF1bXsN6jm17onm/Bes/vy3rLJ2C9BIx0ieuGZ2gQyOnSB66CkbaBA0MJtOl5/5MR3/M1cE624VgnL4RjUR4RopSmGgtOjZZNHasjpoQyRAtBMZNEPxH1XYfl8zawfH4hsLRxpDTWhHNlJIN4P/MrMoeKU/FkzPckhLTPtzBfFsSyIDYMzDcPzHcUmO+XwHy/7sR82T/BfK8JpILc+JGlR3rZm+1WQ25Y6D3KegJslmNFmdHEYP8tCv+ZPB5po4VRVAssXZnp7VOJyGD/8qQx52dbRa6CMtwfUNZ0P32/uIpVSMXCREpIoL/AfKFw0i8Hk3x/MFnVvZi+t1pDChCRGip7prWmTFDDCXkxiIz2B5G1ENV81HPVSULgksZEVDMpgBAzoZ7xE4nlKunL/tPfNqERaFxrqZvqdJpjSMQ1ZkQqoBguozxMDbRJXV/3X12gLUaZInhmxM1HNllEFWfaQPqlinDzGNrqFUVm43mtVnh9wZ1ju2bD9/lo+N0Z69fT08rW/qEwx8HDmdkYIeKRL/v8tU8f0Nt3B0f/2m7XP/dx10Jvteujg3db7rrcx12rrbB+d3Twdm3XncVv3vgvuDXf1n7zf1BLBwhfnNePhwoAAEo+AABQSwECFAAUAAgACABksM9A1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAGSwz0BfnNePhwoAAEo+AAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAHgsAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /><br /> | ||
+ | --[[Benutzer:HecklF|Flo60]] 22:05, 15. Jun. 2012 (CEST) | ||
+ | |||
=Was ist das denn?= | =Was ist das denn?= | ||
<ggb_applet width="300" height="300" version="4.0" ggbBase64="UEsDBBQACAAIADqqpkAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIADqqpkAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vptb9s2EP7c/gpCn2tbJCVZLuwWSYZiAdIXIN0w7EtBSbTNRhY1kX4L+uN3JCVZdtI0SdvBDRbUJSke73hvz52cjF9vFjla8UoJWUw83Pc9xItUZqKYTbylnvZi7/Wr5+MZlzOeVAxNZbVgeuIFhlJkE2/kT+OAZtMeGWWkF3DMe0k6Zb1wxKIwjmgWp0CJNkq8LOQ7tuCqZCm/TOd8wS5kyrQVPNe6fDkYrNfrfiOqL6vZYDZL+huVeQiuWaiJV09eAru9Q2tqyYnv48Ffby8c+54olGZFyj1kVFiKV8+fjdeiyOQarUWm56AwjYmH5lzM5qDUMAg8NDBUJVik5KkWK67gbGdpldaL0rNkrDD7z9wM5a0+HsrESmS8mnh+H5Nw5AdBHJEQx348GnpIVoIXuibGtdBBw268Enzt+JqZFQk301LmCTMs0ZcviPjERy/MgN1AYIgit+W7Zz51A3FD4IbQ0QTueOBIA0cTOJqAemgllEhyPvGmLFdgQ1FMK/Bfu1Z6m3N7n/rBTn38AnRS4hqIqQ/ud0aH577/wnwi+ARmY7CvJO5I1dXygUIbkZhG0f1lku/SlLZCh8FNmST8ip7RHUKd4vdSNOzYFkTZf/ZzQyK9S81DiW79fQKj4D9RcTxocmVcpwdSc0Nbh4/mC2USho5QODJxj1EIyRENIcxDhEcwDAmCdEA4REEISxyjyIxDRIewESCKYmToMEU2O8IY/guGllmEQmBmng4hKREGQQEKKcI2qQIEqYRsYkKSEgoUYYhCOGTEY2JY0AgFEaxojAK4o8nJIQZCCgdhDeIJohhRcxgPEYlQZPjhwOR6FJurA0uCIh9F2DCEtIaUdukM9DGiRpuoNpcoyqXeM1G6yJqplmXrC6AGQNrhngOoPVh8Ns5ZwnMoFZfGkwitWG4ywgqaykKjxonEPZtVrJyLVF1yreGUQp/Zil0wzTdvgFo1si1tKgv1oZL6TObLRaEQSmXut3eWOe7MSXtrWNDORtDdCDsbUWc+vFWuhB20VBzky0o15CzLzg3FDhrAku+LfHtacXZVSrGvxnhgq86YL9NcZIIVf0KwGinGLmhXhAxeNUUoHI6am8gqu9wqCGG0+ZtXErDK7/vdH0iTrdvBlPZH3R8oMiplJvmC0f5ODIfqrfCAX+07vmo9xDZ8p+ysMpndWZyrU5nvHln9z1ipl5XtHwAcK6PUSTHLuY0RC7dQnNOrRG4ua7R2vD5uS1j57gbJzNodATaQMASCekzcaGnM1Voq39L4lsJvok1k7T4eEUthx8SNlgrC112tVhU3amK/ESOURTTfq/OmQSsT/KbULwuhL5qFFulVrSp2B94tFwlvQ2ifJ/5RPMeDgxgbX/Gq4Hkd0uDMpVwql6GdaM94KhawdBu1SZhx1x9wAfc047OKNxfPbW/mDGZ3/W6w3nhsWb2p5OK8WH2EWDi4wHjQ3HKs0kqUJuZQAmXgiu+iKhOKQRXJuudMDoLqqakWYB5tTAPZudRzCc5+k8sIvJUBssBjS75YsCJDha0+54UG2wGMeTtEZIAtmxNwC3ABaNnaqVVBLnVDcOLuXHMzeZ3zBfRxSNvYteHf+vDEcjfOQjL5DNLauur2d9EA222cmrI5c0PiBpaXc2bayNqkOdvyas/IluFbmd3iEYU27ijaTryenVy7Nt+1uebGJg33oNs9PfAlBJhT9oY5P1i1bzPlof1OH2K/00fZD3ptl+dkhxaPNiErIDlsiAEIly75Ss5d3ro7w6QEdhbu9qpIY3zSD63xf5Tt7zLZ2aNM1oXOIzDXMLb2IvDa9NMN9tuvbzDcDyJrMNwPg5+S3fl2JouD/D5xMHkGA6nzei/ToQblUOSxI0scGYMBurP0WyjgBDY+aFntV2sNjeQVvC4r21Lounmwk99FlnH7EjG4270dg+5hSEith0NctxM7B+OHOPjrUaj4zKzaiyTfiMOHX/TRxaLnEm/bpOJ1l9sjrM//KdwR5RoYsShzkQrdhkxugrstyZAMN7uUK85L0x6+Lz5WrFDmOyhH0+l+7mlpdjyWbg0NdZkMD1t0sHsv7NODdv+puCE9Hje03ZGt1Nd1m/TrGPoBcP2bw+Gzr8E1cWTpJ1wDtp0AZGePgmzylCHbGOloYrjniv+2aQeeGmgfla39fhjf+BbGWJ7i20Ac93EcPRlXZMfjiF39bDuVJwjdp/eDbtpAN3GESQvdn/CjwJs+bfAmxxPHO/CGme/e4Wg/Dn+hQP7G283/8H0srsiOyRVP+wVo0P2O2v4qqP7Dhlf/AlBLBwifexFhuAYAAHUhAABQSwECFAAUAAgACAA6qqZA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIADqqpkCfexFhuAYAAHUhAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAATwcAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> | <ggb_applet width="300" height="300" version="4.0" ggbBase64="UEsDBBQACAAIADqqpkAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIADqqpkAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vptb9s2EP7c/gpCn2tbJCVZLuwWSYZiAdIXIN0w7EtBSbTNRhY1kX4L+uN3JCVZdtI0SdvBDRbUJSke73hvz52cjF9vFjla8UoJWUw83Pc9xItUZqKYTbylnvZi7/Wr5+MZlzOeVAxNZbVgeuIFhlJkE2/kT+OAZtMeGWWkF3DMe0k6Zb1wxKIwjmgWp0CJNkq8LOQ7tuCqZCm/TOd8wS5kyrQVPNe6fDkYrNfrfiOqL6vZYDZL+huVeQiuWaiJV09eAru9Q2tqyYnv48Ffby8c+54olGZFyj1kVFiKV8+fjdeiyOQarUWm56AwjYmH5lzM5qDUMAg8NDBUJVik5KkWK67gbGdpldaL0rNkrDD7z9wM5a0+HsrESmS8mnh+H5Nw5AdBHJEQx348GnpIVoIXuibGtdBBw268Enzt+JqZFQk301LmCTMs0ZcviPjERy/MgN1AYIgit+W7Zz51A3FD4IbQ0QTueOBIA0cTOJqAemgllEhyPvGmLFdgQ1FMK/Bfu1Z6m3N7n/rBTn38AnRS4hqIqQ/ud0aH577/wnwi+ARmY7CvJO5I1dXygUIbkZhG0f1lku/SlLZCh8FNmST8ip7RHUKd4vdSNOzYFkTZf/ZzQyK9S81DiW79fQKj4D9RcTxocmVcpwdSc0Nbh4/mC2USho5QODJxj1EIyRENIcxDhEcwDAmCdEA4REEISxyjyIxDRIewESCKYmToMEU2O8IY/guGllmEQmBmng4hKREGQQEKKcI2qQIEqYRsYkKSEgoUYYhCOGTEY2JY0AgFEaxojAK4o8nJIQZCCgdhDeIJohhRcxgPEYlQZPjhwOR6FJurA0uCIh9F2DCEtIaUdukM9DGiRpuoNpcoyqXeM1G6yJqplmXrC6AGQNrhngOoPVh8Ns5ZwnMoFZfGkwitWG4ywgqaykKjxonEPZtVrJyLVF1yreGUQp/Zil0wzTdvgFo1si1tKgv1oZL6TObLRaEQSmXut3eWOe7MSXtrWNDORtDdCDsbUWc+vFWuhB20VBzky0o15CzLzg3FDhrAku+LfHtacXZVSrGvxnhgq86YL9NcZIIVf0KwGinGLmhXhAxeNUUoHI6am8gqu9wqCGG0+ZtXErDK7/vdH0iTrdvBlPZH3R8oMiplJvmC0f5ODIfqrfCAX+07vmo9xDZ8p+ysMpndWZyrU5nvHln9z1ipl5XtHwAcK6PUSTHLuY0RC7dQnNOrRG4ua7R2vD5uS1j57gbJzNodATaQMASCekzcaGnM1Voq39L4lsJvok1k7T4eEUthx8SNlgrC112tVhU3amK/ESOURTTfq/OmQSsT/KbULwuhL5qFFulVrSp2B94tFwlvQ2ifJ/5RPMeDgxgbX/Gq4Hkd0uDMpVwql6GdaM94KhawdBu1SZhx1x9wAfc047OKNxfPbW/mDGZ3/W6w3nhsWb2p5OK8WH2EWDi4wHjQ3HKs0kqUJuZQAmXgiu+iKhOKQRXJuudMDoLqqakWYB5tTAPZudRzCc5+k8sIvJUBssBjS75YsCJDha0+54UG2wGMeTtEZIAtmxNwC3ABaNnaqVVBLnVDcOLuXHMzeZ3zBfRxSNvYteHf+vDEcjfOQjL5DNLauur2d9EA222cmrI5c0PiBpaXc2bayNqkOdvyas/IluFbmd3iEYU27ijaTryenVy7Nt+1uebGJg33oNs9PfAlBJhT9oY5P1i1bzPlof1OH2K/00fZD3ptl+dkhxaPNiErIDlsiAEIly75Ss5d3ro7w6QEdhbu9qpIY3zSD63xf5Tt7zLZ2aNM1oXOIzDXMLb2IvDa9NMN9tuvbzDcDyJrMNwPg5+S3fl2JouD/D5xMHkGA6nzei/ToQblUOSxI0scGYMBurP0WyjgBDY+aFntV2sNjeQVvC4r21Lounmwk99FlnH7EjG4270dg+5hSEith0NctxM7B+OHOPjrUaj4zKzaiyTfiMOHX/TRxaLnEm/bpOJ1l9sjrM//KdwR5RoYsShzkQrdhkxugrstyZAMN7uUK85L0x6+Lz5WrFDmOyhH0+l+7mlpdjyWbg0NdZkMD1t0sHsv7NODdv+puCE9Hje03ZGt1Nd1m/TrGPoBcP2bw+Gzr8E1cWTpJ1wDtp0AZGePgmzylCHbGOloYrjniv+2aQeeGmgfla39fhjf+BbGWJ7i20Ac93EcPRlXZMfjiF39bDuVJwjdp/eDbtpAN3GESQvdn/CjwJs+bfAmxxPHO/CGme/e4Wg/Dn+hQP7G283/8H0srsiOyRVP+wVo0P2O2v4qqP7Dhlf/AlBLBwifexFhuAYAAHUhAABQSwECFAAUAAgACAA6qqZA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIADqqpkCfexFhuAYAAHUhAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAATwcAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> |
Version vom 15. Juni 2012, 21:05 Uhr
Das Innere eines Dreiecks
Seien ABC drei nichtkollineare Punkte der Ebene . Das Innere des Dreiecks ABC kann mittels folgender Applikation dargestellt werden:
--Flo60 22:05, 15. Jun. 2012 (CEST)
Was ist das denn?
--Flo60 21:29, 6. Mai 2012 (CEST)
TSV wunderbar