Lösung von Aufgabe 9.2P (SoSe 12): Unterschied zwischen den Versionen
Zeile 11: | Zeile 11: | ||
Ja, dann müssen wir evtl einfach noch die Halbgerade AB+ und AB- zusammenfügen und somit zeigen, dass A´B´ existiert. Oder?--[[Benutzer:PippiLotta|PippiLotta]] 13:57, 25. Jun. 2012 (CEST) | Ja, dann müssen wir evtl einfach noch die Halbgerade AB+ und AB- zusammenfügen und somit zeigen, dass A´B´ existiert. Oder?--[[Benutzer:PippiLotta|PippiLotta]] 13:57, 25. Jun. 2012 (CEST) | ||
− | Ja. Die Geradentreue müsste dann die Vereinigungsmenge zweier Halbgeraden sein! --[[Benutzer:Honeydukes|Honeydukes]] 15:00, 25. Jun. 2012 (CEST) | + | Ja. Die "Geradentreue" müsste dann die Vereinigungsmenge zweier Halbgeraden sein! Aber ich glaube hier müssen wir aufpassen, denn AB+ und AB- sind zwar Halbebenen, aber beide haben den Punkt A. Also müssten wir zwei Halbebenen vereinigen bspw.: <math>\ AB^{+}</math> und<math>\ AB- \setminus A</math> --[[Benutzer:Honeydukes|Honeydukes]] 15:00, 25. Jun. 2012 (CEST) |
Version vom 25. Juni 2012, 14:04 Uhr
Beweisen Sie die Geradentreue der Geradenspiegelung. Nutzen Sie für den Beweis die Halbgeradentreue der Geradenspiegelung.
ich versteh nicht ganz, was wir beweisen sollen:
wenn wir die halbgeradentreue bewiesen haben, müssen wir die geradentreue doch eigentlich gar nicht mehr beweisen, oder?
eine gerade ab ist doch die vereinigungsmenge der beiden halbgeraden ab+ und ab-
wenn beide halbgeradentreu sind, ist doch die gerade geradentreu...--Studentin 00:47, 25. Jun. 2012 (CEST)
Ja, dann müssen wir evtl einfach noch die Halbgerade AB+ und AB- zusammenfügen und somit zeigen, dass A´B´ existiert. Oder?--PippiLotta 13:57, 25. Jun. 2012 (CEST)
Ja. Die "Geradentreue" müsste dann die Vereinigungsmenge zweier Halbgeraden sein! Aber ich glaube hier müssen wir aufpassen, denn AB+ und AB- sind zwar Halbebenen, aber beide haben den Punkt A. Also müssten wir zwei Halbebenen vereinigen bspw.: und --Honeydukes 15:00, 25. Jun. 2012 (CEST)