Lösung von Zusatzaufgabe 11.1P (SoSe 12): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(Die Seite wurde neu angelegt: „Beweisen Sie: Bei Spiegelungen, Stöße beim Billard über Bande, etc. gilt stets: Einfallswinkel <math>\alpha</math> gleich Ausfallswinkel <math>\beta</math> (s…“) |
|||
Zeile 1: | Zeile 1: | ||
Beweisen Sie: Bei Spiegelungen, Stöße beim Billard über Bande, etc. gilt stets: Einfallswinkel <math>\alpha</math> gleich Ausfallswinkel <math>\beta</math> (siehe GeoGebra-Applet).<br /> | Beweisen Sie: Bei Spiegelungen, Stöße beim Billard über Bande, etc. gilt stets: Einfallswinkel <math>\alpha</math> gleich Ausfallswinkel <math>\beta</math> (siehe GeoGebra-Applet).<br /> | ||
− | <ggb_applet width="536" height="428" version="4.0" ggbBase64="UEsDBBQACAAIAAli4UAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAAli4UAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5VnNcts2ED6nT4HhoadIAgiQlFIpmcRxp55x2k6ddjq9gSQsoaYIloB+nOlLNQ+SZ+oCIClKcpzacdJ06rEMgFjsYr/9dgHK02fbZYHWotZSlbOADHGARJmpXJbzWbAyl4Nx8OzpV9O5UHOR1hxdqnrJzSxgVlLmsyDjnI3zkA0IZnjABBUDLrAYECYYTyaURWkeILTV8kmpvudLoSueiYtsIZb8XGXcOMMLY6ono9Fmsxm2poaqno/m83S41aAAtlnqWdB0noC6vUUb6sRDjMno11fnXv1AltrwMhMBsi6s5NOvHk03sszVBm1kbhazIGIsQAsh5wvr0wR8GlmhCgCpRGbkWmhY2hs6n82yCpwYL+38I99DRedOgHK5lrmoZwEe0jiJWYKj8TikUTixFlUtRWkaYdIYHbXqpmspNl6v7TmTsMgoVaTcqkR//olCHGL02DbENyE0ceynsH+GqW9C3zDfRF6G+eXMizIvw7wMowFaSy3TQsyCS15ogFCWlzWErxtrc10It5/mwc598hh80vINCFMMmHrM4TnGj+0nhg/DDdg9J0nPqqlXdzTamoxo/M9Nhh/lKG1thje5GUbvcTO+xaj3+5/4SaKeTTDlft3nyCK9zc1Di378cQZj9llcnI7aVJk22YH0wso27DFiqW2+0AmKJpb2BEWQG3ECLI8QmUCThAiyAZEIsQiGZIxi2yaIJjDBEEVjZOUIRS45ojH8YYlTFqMIlNmnCeQkImCIoYgi4nKKIcgk5PIScjSkIBFFKIJF1jwJrQoaIxbDiI4Rgz3alEwICFJYCGMwHyJKELWLSYLCGMVWH2E21eOx3TqoDFGMUUysQshqyGifzSA/RtR6EzdwybJamT2IsmXedo2quliANNSjXdnz9WmvKj6aFjwVBRwUFzaSCK15YTPCGbpUpUFtEEP/bF7zaiEzfSGMgVUa/c7X/Jwbsf0WpHVr28lmqtQ/1sqcqGK1LDVCmSpwt2dVkF4/7HYNA9qbYP2JqDcR9/rJjXYVzKCVFmBf1boV53l+ZiV2pQGQ/KEsrl/Ugl9VSu67MR25M2cqVlkhc8nLX4Cs1orFBXVHkC1X7RFEw6TdiKrzi2sNDEbb30StoMYQNpz0f5IAXfspSqIh7v+ASp1xm3xssr9oDFPXzVyE91c1wRPrLkR8K3bezmvZkcX2z/QLVeTdtPP/hFdmVbvbAxTH2nr1vJwXwnHElVs4mrOrVG0vPDmo1/X6uoIR9htI5w53BLUhjCIQaNrUt07G7qyTwk4GOwncsk3m3TyZhE7CtalvnRTQ12+t8ZS0XhLcmpHaVTQcNHnTVitLfnvSr0ppztuBkdlV4yrxC75fLVPRUWhfJ3kondPRAcemV6IuRdFQGmK5UivtM7TH9lxkcglDP9FAwm24foYN+Ke5mNei3XjhbmYeMDeL+2w9euxUfVur5Vm5fg1cONjAdNTucqqzWlaWciiFY+BK7FiVS83hFMn762wOguuZPS0AHmOhgexcmYWq3eULigq0NvUKsYSbFjKOXo6hHczP3R3O4olU+jvUte7o8/O7gMH0jVRzpORFteD2ntc4XfBrUe/B4PS9UvkhOIC98wCSvLIKbHQrITwx/I6hU4FCl097ZQrw1mg7CwahvYhfQ7bZ9o2/wvs7rHXWJtleYfZPDyIF9PE4fQCxF18WYvfBK3pguDK1XPIyR6W72ZxDOQl2By3HlmWIEwudx2Vl2gnuVTUKjpC3lakDln8A+J6r70Me3x/3HXq4QS9p0BuEHX67SmrgkL+CNxntyr1pCrvrfCfzXLgLnj9o/ij9Eu3Lm1xWhcykuQsnT/77nOxyGH8SUr6Sda3qA1qeeFryI1qefM0rpb+5nZwHIWiW/KuBuAHO+DOUxJf/ffrRIRs7vMiQsM9TFFvGOA6+POJgeofSmH4hpZEN3c3anjAWTlcc6RBe9T95ddxH+6w0cDUEHA4g5x7s9Ajs07uk+um96G6/DZj7JvXNA+ANZxDtv9h4CmNI/tjBT9kQhw9I4wsxt89vrqOnR7Bmt8OqG20tcNkXQuMB7S5IdBwmJMZs4jue0/GnOu8deIUtUx2Doawdv7NcCVHZl8Ufytc1L7X9PtrL9N6F3hNB9yJ68/XsFJrQRvMwjO/+uj2O7hWnixJIu+9vebFqAR4mUODxOIoYJROW4AaK+50YBB+Hmtwt1PeJG6+zXva0R09RqM1P4rIQWwfsx0Th5V4Uju/K797eKQpvPxCFGKrF/y4Ko/5bs/tyqvlHy9O/AVBLBwhsZZadrAYAAAUaAABQSwECFAAUAAgACAAJYuFA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAAli4UBsZZadrAYAAAUaAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAQwcAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br /> | + | <ggb_applet width="536" height="428" version="4.0" ggbBase64="UEsDBBQACAAIAAli4UAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAAli4UAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5VnNcts2ED6nT4HhoadIAgiQlFIpmcRxp55x2k6ddjq9gSQsoaYIloB+nOlLNQ+SZ+oCIClKcpzacdJ06rEMgFjsYr/9dgHK02fbZYHWotZSlbOADHGARJmpXJbzWbAyl4Nx8OzpV9O5UHOR1hxdqnrJzSxgVlLmsyDjnI3zkA0IZnjABBUDLrAYECYYTyaURWkeILTV8kmpvudLoSueiYtsIZb8XGXcOMMLY6ono9Fmsxm2poaqno/m83S41aAAtlnqWdB0noC6vUUb6sRDjMno11fnXv1AltrwMhMBsi6s5NOvHk03sszVBm1kbhazIGIsQAsh5wvr0wR8GlmhCgCpRGbkWmhY2hs6n82yCpwYL+38I99DRedOgHK5lrmoZwEe0jiJWYKj8TikUTixFlUtRWkaYdIYHbXqpmspNl6v7TmTsMgoVaTcqkR//olCHGL02DbENyE0ceynsH+GqW9C3zDfRF6G+eXMizIvw7wMowFaSy3TQsyCS15ogFCWlzWErxtrc10It5/mwc598hh80vINCFMMmHrM4TnGj+0nhg/DDdg9J0nPqqlXdzTamoxo/M9Nhh/lKG1thje5GUbvcTO+xaj3+5/4SaKeTTDlft3nyCK9zc1Di378cQZj9llcnI7aVJk22YH0wso27DFiqW2+0AmKJpb2BEWQG3ECLI8QmUCThAiyAZEIsQiGZIxi2yaIJjDBEEVjZOUIRS45ojH8YYlTFqMIlNmnCeQkImCIoYgi4nKKIcgk5PIScjSkIBFFKIJF1jwJrQoaIxbDiI4Rgz3alEwICFJYCGMwHyJKELWLSYLCGMVWH2E21eOx3TqoDFGMUUysQshqyGifzSA/RtR6EzdwybJamT2IsmXedo2quliANNSjXdnz9WmvKj6aFjwVBRwUFzaSCK15YTPCGbpUpUFtEEP/bF7zaiEzfSGMgVUa/c7X/Jwbsf0WpHVr28lmqtQ/1sqcqGK1LDVCmSpwt2dVkF4/7HYNA9qbYP2JqDcR9/rJjXYVzKCVFmBf1boV53l+ZiV2pQGQ/KEsrl/Ugl9VSu67MR25M2cqVlkhc8nLX4Cs1orFBXVHkC1X7RFEw6TdiKrzi2sNDEbb30StoMYQNpz0f5IAXfspSqIh7v+ASp1xm3xssr9oDFPXzVyE91c1wRPrLkR8K3bezmvZkcX2z/QLVeTdtPP/hFdmVbvbAxTH2nr1vJwXwnHElVs4mrOrVG0vPDmo1/X6uoIR9htI5w53BLUhjCIQaNrUt07G7qyTwk4GOwncsk3m3TyZhE7CtalvnRTQ12+t8ZS0XhLcmpHaVTQcNHnTVitLfnvSr0ppztuBkdlV4yrxC75fLVPRUWhfJ3kondPRAcemV6IuRdFQGmK5UivtM7TH9lxkcglDP9FAwm24foYN+Ke5mNei3XjhbmYeMDeL+2w9euxUfVur5Vm5fg1cONjAdNTucqqzWlaWciiFY+BK7FiVS83hFMn762wOguuZPS0AHmOhgexcmYWq3eULigq0NvUKsYSbFjKOXo6hHczP3R3O4olU+jvUte7o8/O7gMH0jVRzpORFteD2ntc4XfBrUe/B4PS9UvkhOIC98wCSvLIKbHQrITwx/I6hU4FCl097ZQrw1mg7CwahvYhfQ7bZ9o2/wvs7rHXWJtleYfZPDyIF9PE4fQCxF18WYvfBK3pguDK1XPIyR6W72ZxDOQl2By3HlmWIEwudx2Vl2gnuVTUKjpC3lakDln8A+J6r70Me3x/3HXq4QS9p0BuEHX67SmrgkL+CNxntyr1pCrvrfCfzXLgLnj9o/ij9Eu3Lm1xWhcykuQsnT/77nOxyGH8SUr6Sda3qA1qeeFryI1qefM0rpb+5nZwHIWiW/KuBuAHO+DOUxJf/ffrRIRs7vMiQsM9TFFvGOA6+POJgeofSmH4hpZEN3c3anjAWTlcc6RBe9T95ddxH+6w0cDUEHA4g5x7s9Ajs07uk+um96G6/DZj7JvXNA+ANZxDtv9h4CmNI/tjBT9kQhw9I4wsxt89vrqOnR7Bmt8OqG20tcNkXQuMB7S5IdBwmJMZs4jue0/GnOu8deIUtUx2Doawdv7NcCVHZl8Ufytc1L7X9PtrL9N6F3hNB9yJ68/XsFJrQRvMwjO/+uj2O7hWnixJIu+9vebFqAR4mUODxOIoYJROW4AaK+50YBB+Hmtwt1PeJG6+zXva0R09RqM1P4rIQWwfsx0Th5V4Uju/K797eKQpvPxCFGKrF/y4Ko/5bs/tyqvlHy9O/AVBLBwhsZZadrAYAAAUaAABQSwECFAAUAAgACAAJYuFA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAAli4UBsZZadrAYAAAUaAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAQwcAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br /><br /><br /> |
+ | da scheitelwinkel gleich groß sind, ist die größe von beta gleich dem blauen winkel<br /> | ||
+ | und da ab die winkehalbierende von c | ||
+ | |||
+ | <ggb_applet width="1366" height="607" version="4.0" ggbBase64="UEsDBBQACAgIAKQS5EAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAKQS5EAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vltc9M4EP4Mv2LHH+4TTSy/KAmXwkCBuc4UuLlyNzf3TbbVRNSxfJbyxvCnDv4Hv+lWku04CS0tpRy9TlNZ0mpX++w+K8UdP17NcljwSglZHHqk53vAi1RmopgcenN9djD0Hj+6P55wOeFJxeBMVjOmD73ISIrs0PM5CUlIg4PEJ9lBdEb4wTBOBwcsGgZpRnlKQu4BrJR4WMhXbMZVyVJ+mk75jJ3IlGlreKp1+bDfXy6XvcZUT1aT/mSS9FYq8wC3WahDr354iOq2Fi1DKx74Pun/+fLEqT8QhdKsSNG+cWEuHt2/N16KIpNLWIpMT9HhcBh4MOViMkWnBlHkQd9IlYhIyVMtFlzh2k7XOq1npWfFWGHm77knyFt/PMjEQmS8QoB6JB6NECQ6CsloGNAw9EBWghe6Fia10X6jbrwQfOn0midrEnempcwTZlTC+/cQ+IEPD0xDXBNgQ6mb8t2YH7omcE3kmtjJRG555EQjJxM5mQj3uBBKJDk/9M5YrhBDUZxVGL+2r/Q653Y/9cDGffIAfVLiHQqHPiaKAx3Hff+B+VD8RGaiv+0k6VjV1fyaRhuTmI706jaDG3kaNkaDgOzbDOIL/KSXGHWOX8nRuIMtmrK/9rNnMbzMzV2Lrn8zgzT6Li6O+w1XxjU9QE2NbJ0+ms+UIUw4gnhk8p5AjOSgA0zzGMgIm0EASAcgMUQxdskQqGkHEA5wIoIQhmDkSAiWHfEQ/0QDq4xCjMrM6ABJCQQNRRCHQCypIkAqgSUmkjQIUSKOIcZFxjwJjIqQQkSxFw4hwj0aTg4ICoa4EPtoPoCQQGgWkwEEFKjRRyLDdTo0W0eVAVAfKDEKkdZIaUdnlB9CaLyhNVyiKOd6C6J0ljWPWpZtLFAaC9Km7rkCtVUW741zlvAcj4pTE0mABcsNI6yhM1loaIIYuLFJxcqpSNUp1xpXKXjLFuyEab56gdKqsW1lU1moXyupj2Q+nxUKIJW53+5Z5qTzHLS7xk7YmYi6E3FngnaeB5+1K3EG5oqjfVmpRpxl2bGR2JQGRPJ1ka+fVpydl1JsuzHu21NnzOdpLjLBij8wWY0VgwtsDiFTr5pDiPq02YmsstO1whSG1V+8klhkCJ673Z+RB2s3FYXD3qj7g/xTKTPsi/3tRViz1vVUNNpeNHSm+aINEVvxjbeTylC70zlWT2W+GbIAHLFSzyt7gUBLlfHqSTHJuU0SS208ndPzRK5O63LtdL1Zl9jz3Q6SiQUesDgEcYwCdZu41sqYrbVSvpXxrYTfpJvI2nkyCqyEbRPXWinMX7e12lXSuEn8xoxQ7qrj1cRpypXJfnPWzwuhT5qOFun5xlWz4NV8lvA2h7Z1km+lc9zfSbLxOa8Kntc5jcGcy7lyFO2ke8ZTMcOum6ghYSZcv+MG3GjGJxVvNp7by5kDzM763WzdG7aqXlRydlws3mAu7Gxg3G92OVZpJUqTc5DgOXDON1mVCcXwGMm66wwJ0fXUHBcIjzbQID3neiore/3CqoKt4V7OZ3jXAm3Ty2ZoC/MTe4szeIJM3mJha88+N78JGE5/NtVsUrK8nDJz06udztmaV1swWH0vZbYLDmJvPUCSly62JecuLdx+8aFEdZZNW1UK0VawckZhXV/I37krvLvCGk8Nw7bKshvdCRPmjgPpC3A9vftwjb4xXKmczViRQWHvNSdYS7zNMct8k2LAiIHO4TLXzQRzqmoFe8ibstQCy74AfMfVi5D3vx73/WQb1egdhLRV1pZRjUf8OX6RUfZureuqbh9+EVnG7fXOHTN/F26JcrVNzMpcpEJfJyeP7n5ONqiS70DhZ3cfLlrDFdwKhV+KqpLVDomPHInZHomPfmKlVD9fTuWdhK2X/Kdx2E++wa2geconZnwXzhoCC+qzPVCTy+FUtc4GquQHKY5xjSRtimMU3FZxtHDlhiPHhcZrILf3oP3b3TnnpblWvy7eVKxQ5uWdk+ncGi+IXKt4J3bMRS3Zi9rz65Dg+Velv3mnMHFN4pqbR43QoCm/Q7+OXBR/DxI4IJ/vAZleL/3THyT9D8Iax7BH68tBj97Z9LffWD9/lXuOTWDitxu4T/9cHjn7XaiNC0rbV70snzeQ9ugoGoTDYEDJiA78sE63r4xt8305Jp3wkiuGd+/L8dUjx6q0w5jm4M9zufyNn+V8ZaG9SRySi07jTx+uFYAPtxaA5pWFoxfxg/9ZBLYO8JoPT/bD8fFa4fh4a+EwDJi4Zu/i9OOHo99912HfKdb/IXv0L1BLBwgNaBXbqQYAAL4bAABQSwECFAAUAAgICACkEuRA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAKQS5EANaBXbqQYAAL4bAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAQAcAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> | ||
+ | |||
+ | |||
[[Kategorie:Einführung_P]] | [[Kategorie:Einführung_P]] |
Version vom 4. Juli 2012, 01:25 Uhr
Beweisen Sie: Bei Spiegelungen, Stöße beim Billard über Bande, etc. gilt stets: Einfallswinkel gleich Ausfallswinkel (siehe GeoGebra-Applet).
da scheitelwinkel gleich groß sind, ist die größe von beta gleich dem blauen winkel
und da ab die winkehalbierende von c