Lösung von Testaufgabe 2.1 SS12: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 9: Zeile 9:
 
Es seien A,B,C,D vier kollineare Punkte, von denen zwei jeweils paarweise kollinear sind.
 
Es seien A,B,C,D vier kollineare Punkte, von denen zwei jeweils paarweise kollinear sind.
 
Eine Figur mit der Vereinigungsmenge aus <math>\overline{AB} </math>, <math>\overline{BC} </math>, <math>\overline{CD} </math>, <math>\overline{DA} </math>, ist ein Viereck.--[[Benutzer:Mahe84|Mahe84]] 17:04, 14. Jul. 2012 (CEST)
 
Eine Figur mit der Vereinigungsmenge aus <math>\overline{AB} </math>, <math>\overline{BC} </math>, <math>\overline{CD} </math>, <math>\overline{DA} </math>, ist ein Viereck.--[[Benutzer:Mahe84|Mahe84]] 17:04, 14. Jul. 2012 (CEST)
 +
 +
Es seien A, B, C und D vier paarweise verschiedene Pnkte ein und derselben Ebene. JE drei der Punkte seien nich kollinear. Die Vereinigungsmenge der Strecken <math>\overline{AB} </math>, <math>\overline{BC} </math>, <math>\overline{CD} </math> und <math>\overline{DA} </math> heißt Viereck.--[[Benutzer:*osterhase*|*osterhase*]] 17:23, 14. Jul. 2012 (CEST)

Version vom 14. Juli 2012, 16:23 Uhr

Es seien A,B,C,D vier Punkte die alle in einer Ebene liegen und nicht kollinear sind. Unter dem Viereck ABCD versteht man die Punktmenge: \overline{AB} vereinigt mit \overline{BC} vereinigt mit \overline{CD} vereinigt mit \overline{AD} --Funkdocta 11:33, 14. Jul. 2012 (CEST)

Es seien A,B,C,D vier Punkte. Die Punkte A,B,C,D seien komplanar und jeweils zwei von ihnen kollinear. Die Vereinigungsmenge der Strecken AB,BC,CD,AD bilden das Viereck ABCD.--Celebino 11:44, 14. Jul. 2012 (CEST)

Ist beides nicht ganz korrekt.--*m.g.* 14:20, 14. Jul. 2012 (CEST)

Es seien A,B,C,D vier kollineare Punkte, von denen zwei jeweils paarweise kollinear sind. Eine Figur mit der Vereinigungsmenge aus \overline{AB} , \overline{BC} , \overline{CD} , \overline{DA} , ist ein Viereck.--Mahe84 17:04, 14. Jul. 2012 (CEST)

Es seien A, B, C und D vier paarweise verschiedene Pnkte ein und derselben Ebene. JE drei der Punkte seien nich kollinear. Die Vereinigungsmenge der Strecken \overline{AB} , \overline{BC} , \overline{CD} und \overline{DA} heißt Viereck.--*osterhase* 17:23, 14. Jul. 2012 (CEST)