Satz des Thales SS 12: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(→Satzfindung) |
(→Beweisfindung) |
||
Zeile 9: | Zeile 9: | ||
===Variante 3=== | ===Variante 3=== | ||
<ggb_applet width="1005" height="544" version="3.2" ggbBase64="UEsDBBQACAAIAAO77zwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vvdbts4Fr7eeQrCCxQt0KgiRf21SQs7SbvFtttF050Ce7OQZVpWI0seiUqcvMzczAs0nZkXyH2eaQ9JyZYsx7Vst00mF5FFUeTh953vHOpY3n8xHUfojKVZmMQHHazpHcRiPxmEcXDQyflwz+m8eP7TfsCSgPVTDw2TdOzxg46hkY5oz8PnP/1tPxsl58iLZJefQ3Z+0Bl6UcY6KJukzBtkI8Z4rd3Lp2EUeunFu/4n5vNsfkEN8jqe5DALT3No88eDN2FWnj6RE06ikB+FZ+GApShK/IOOZYLp8OlnlvLQ96KDDtVVCznokIWL0GSIq6MkDS+TmIvu88GH0IJQFl4yQISItv0ncqH7LPejcBB6sViMtAM6IXQeDvgI+uq6CWOyMBiBsSYlajg/SdLByUXG2RhN/8vSBOzBpkD6Qp0ZlIqzDAyDGU1dXqqeyWHY2QnjHHjJkDdlc8SCNBzUTl5nvSSaN02SMOaH3oTnqSTVKJpO+IWYAOZKhcHdOIhY0UYA8xHzT/vJ9EShYKihP1xM5C3SoH5wmERJilKBLyw8KI59dZR9hKWzXrrso8sexRhi0Nl17BLZQx776ih7RWGsTCtWjstVY72cJsyQaBAwgi/OFh95fQbcdlAeh/xNeQI+cFosFasb/pWP+yCCqhfMxsS7GnP/yYL/7J+yNGaRcpIYuM2TPENnwhvVXNKQAfPDMZyqC+WKBV3/AQNU64AFKSsNVxJSgFXvUY640Lz/pDRC2JCBrT6HWADr4WItL/P4VJyDM6Ie46nnj3geB0jors9AfjHyYjiB48cwPmWR0DYHXQlMBh6HIUScYBEbM1AVlw4k/W8G5NvOLIQkMhqUui+uzymBy0udSbqdF01GHrSUeom8C7Cxun453ttkwBaQBHTlkkGhEzGA4G/C2KCIh7xwejSBIaWEKuRITDM0Pejs6ZpBQbjiLvHhUt0ueynBiVghZzYKb1CgfAWe3v9wE6C6K94ThLDmOHr1D0u49rBmknZ4+cl4DG6HYm8MEx+GqR8xCVIo8gbydOFVyMMKPYVMzstLvhquGKQBP8gg9GfY+p16BOIjEHrMskyGSV4NiLe7cAWO2xjSN+dnLeMgK7H4DExL0gyhqV5Qd6GrCdFl2TLF0pfFNVw0XeIKN+AKaThF3bJ/t+zVJYJLrGHXqtAMftc1ijm6VHwQ4uiaknf4qIz7JVYLyFQEBefyw2Hor+b931Inddr9Btvd1WzXxdbdIhaZeHupDcMpG6iW+VSVGGNorqVT1ya6QYnhWGQWcGrCMreR0xtwpwVUu0pMbxvgeqvBFZ45w87bUEltY90WSpojTTVKdccluuuYum4R63gPWxJsQ7PIAgWA9R7VHBNTyyImMR3btc022lxw/3AM21s/5Kt5eh1z2F4ARA0JSLI8OIitb4lBhbVeG0n07rYk4EHEWaoIw63+tUzImwSawzaoHv5gVHeX03UHW5aNiWtg13YstQWimmW5lkt1y9INh1Jrq4h0wgLRvsDAofLzboOI/moismK0Eur+3c/wVXc3SBVY01F7KHiepARb1DCITQ2LOgpvV3OpYVNKKLFsB+jZUVSSeEfCL2ZRCHyp+exyythEPDS+iz+kXpyJ6kFdym1J791G+qAd6YP7RDrslDDWCTF0QiHBYNMyIR2ZinlbI1SHAAcu4VDbJirSuZqtgySJqZvYNt1dZaMfxnsh9l6Dd9aOd3afeF8Uuy0ZJ7DDdhxD122KdarbltqAYENzoK8DesfYNS18jziXxafbwrvcxjSJv/m8mnlZIZlRBr3F/WBPXqBtapbrmia1MCaOS037a6wvT8ll6atJu2GuyTteQZSxQJSX+vO06ZaNUZScv2fDiE0lkg1q2BhsErXK97NS30KfjbjpKW6awfjmqhU3V4vc6Jrr2NgyLUN3dWpbtrEZOUqRWG+SQ+8pN6v2lEd3uU609o6SarOy0C7LaMd/LXCIZjjbbKnfJ9zji7I+UrLee3jz+ZGS9nFD2kcPvEmSPWvzrFPeshEB4oEiUIe+Ouzi4R4iii6ivyiWOKY7q0Nigk14iITHd/HMv9VDy7K4WSIhYT5WEB81o+cXVbRcO35+KUrEtQhqOgaET8s1HVeHpzO8fgT1k3gQKleF3u+Kzqdtct+64bXxBc+64dX8HqlvuUiqHIJUrr4mlY0Fc9dkY2qYzqNPreBofCOlLNPLHM+6an5vpZnfv7rncL6BYrbfkNxtxSypHR+V7C0SNlzNV612PLxPtWOQQb34qGo06msWWSomVq3Djh7UWtFyrGhpxKgaRUELioL7RNHt5X0gT+06iUZtE89Jsuk3p2lZnXnYIOVlm1TycrP0gYnK7PJ4x7a++pZb32UoBw2UX7VB+dVfBmVLw2R5jse7r+C/vC01jNoV9Ua7KOptnM13GJaI/Nq9kiocbVW+v2NVvOUkF4nmVYPksB3J4Y4rtz+OZUdzHGw7FLs2yIqYZJZ8gH+y5It8qjm6bVZS0V32CTadpGCJALYA/QObcogecOGg8+CXPOHPxtd/BpGGuvkwgC4xBKwoyuPg6YO/Y/2Z/Ndj5yxg6BB5+RAN2Bj9M2VhpslrH70MTTyYgqUcjUOObj6jHLzwvNoOu9bQH10yoDhQna5eqMmlwXVf42Bhp27u5uXGrT0l417KZZZCKvHpagNpapTcGpG/TgGpUfCRxTHA2xc4c3QepoPH4j3g69/E23ygCQCvxPXmSkMS+OOYnzPx5h9cEHegIL3+8/pXaFDdVOMpIB+z9DFKRNd8HLBTNkq5Nic3YLGXs/SpGAey1pijcIwyFoEroLfe9a/oMn8MYzExpNdXPcQMlbHWZpKszeTygPDpe9FsaWZD+/J1E2q149mo8XwEMJ7k4zEDJWXytc1XijR0BrcVDDearxThYSaoGcNVJScNPRzAeEdeWkoWbufAWsr8Ec/AmzJ+/RsojiPol2mP5CjdKEvQOM8yMAG8SoxQm+yLeJMUfPFUvH/qARwZOJByl4ev45jF5/LN0kyuYtGkZ6jHxOwxGAOGCKX/I4yGTN4u1tUYgaUBE55WtWPAsuL91UwZ82h9DzO29LBvl3IaHmbRhfihXpWpuV29ltOuavOyVqlppvybP1rVaP5YrNFQzcbEcBzXEd+HWo57Bzd1GxdoRFXo21doltFWvN53eOtXrV/alaMXacOaaeu2axnEsl3quFaL0tqarz/hdspYa+tUY8f4Ht/n9ZMkYl48g+HTIpKVeb7P5uTdcJgxLrchZYHENFch63sTqTLZ1mNJv/jFAIuftlv76Z1ae/HqhWWsvfYTfxRBzhsmUcBSsbldXP6T6u8t5G+Mih9ZPf8/UEsHCFrfzszPCQAAljUAAFBLAQIUABQACAAIAAO77zxa387MzwkAAJY1AAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAACQoAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" /> | <ggb_applet width="1005" height="544" version="3.2" ggbBase64="UEsDBBQACAAIAAO77zwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vvdbts4Fr7eeQrCCxQt0KgiRf21SQs7SbvFtttF050Ce7OQZVpWI0seiUqcvMzczAs0nZkXyH2eaQ9JyZYsx7Vst00mF5FFUeTh953vHOpY3n8xHUfojKVZmMQHHazpHcRiPxmEcXDQyflwz+m8eP7TfsCSgPVTDw2TdOzxg46hkY5oz8PnP/1tPxsl58iLZJefQ3Z+0Bl6UcY6KJukzBtkI8Z4rd3Lp2EUeunFu/4n5vNsfkEN8jqe5DALT3No88eDN2FWnj6RE06ikB+FZ+GApShK/IOOZYLp8OlnlvLQ96KDDtVVCznokIWL0GSIq6MkDS+TmIvu88GH0IJQFl4yQISItv0ncqH7LPejcBB6sViMtAM6IXQeDvgI+uq6CWOyMBiBsSYlajg/SdLByUXG2RhN/8vSBOzBpkD6Qp0ZlIqzDAyDGU1dXqqeyWHY2QnjHHjJkDdlc8SCNBzUTl5nvSSaN02SMOaH3oTnqSTVKJpO+IWYAOZKhcHdOIhY0UYA8xHzT/vJ9EShYKihP1xM5C3SoH5wmERJilKBLyw8KI59dZR9hKWzXrrso8sexRhi0Nl17BLZQx776ih7RWGsTCtWjstVY72cJsyQaBAwgi/OFh95fQbcdlAeh/xNeQI+cFosFasb/pWP+yCCqhfMxsS7GnP/yYL/7J+yNGaRcpIYuM2TPENnwhvVXNKQAfPDMZyqC+WKBV3/AQNU64AFKSsNVxJSgFXvUY640Lz/pDRC2JCBrT6HWADr4WItL/P4VJyDM6Ie46nnj3geB0jors9AfjHyYjiB48cwPmWR0DYHXQlMBh6HIUScYBEbM1AVlw4k/W8G5NvOLIQkMhqUui+uzymBy0udSbqdF01GHrSUeom8C7Cxun453ttkwBaQBHTlkkGhEzGA4G/C2KCIh7xwejSBIaWEKuRITDM0Pejs6ZpBQbjiLvHhUt0ueynBiVghZzYKb1CgfAWe3v9wE6C6K94ThLDmOHr1D0u49rBmknZ4+cl4DG6HYm8MEx+GqR8xCVIo8gbydOFVyMMKPYVMzstLvhquGKQBP8gg9GfY+p16BOIjEHrMskyGSV4NiLe7cAWO2xjSN+dnLeMgK7H4DExL0gyhqV5Qd6GrCdFl2TLF0pfFNVw0XeIKN+AKaThF3bJ/t+zVJYJLrGHXqtAMftc1ijm6VHwQ4uiaknf4qIz7JVYLyFQEBefyw2Hor+b931Inddr9Btvd1WzXxdbdIhaZeHupDcMpG6iW+VSVGGNorqVT1ya6QYnhWGQWcGrCMreR0xtwpwVUu0pMbxvgeqvBFZ45w87bUEltY90WSpojTTVKdccluuuYum4R63gPWxJsQ7PIAgWA9R7VHBNTyyImMR3btc022lxw/3AM21s/5Kt5eh1z2F4ARA0JSLI8OIitb4lBhbVeG0n07rYk4EHEWaoIw63+tUzImwSawzaoHv5gVHeX03UHW5aNiWtg13YstQWimmW5lkt1y9INh1Jrq4h0wgLRvsDAofLzboOI/moismK0Eur+3c/wVXc3SBVY01F7KHiepARb1DCITQ2LOgpvV3OpYVNKKLFsB+jZUVSSeEfCL2ZRCHyp+exyythEPDS+iz+kXpyJ6kFdym1J791G+qAd6YP7RDrslDDWCTF0QiHBYNMyIR2ZinlbI1SHAAcu4VDbJirSuZqtgySJqZvYNt1dZaMfxnsh9l6Dd9aOd3afeF8Uuy0ZJ7DDdhxD122KdarbltqAYENzoK8DesfYNS18jziXxafbwrvcxjSJv/m8mnlZIZlRBr3F/WBPXqBtapbrmia1MCaOS037a6wvT8ll6atJu2GuyTteQZSxQJSX+vO06ZaNUZScv2fDiE0lkg1q2BhsErXK97NS30KfjbjpKW6awfjmqhU3V4vc6Jrr2NgyLUN3dWpbtrEZOUqRWG+SQ+8pN6v2lEd3uU609o6SarOy0C7LaMd/LXCIZjjbbKnfJ9zji7I+UrLee3jz+ZGS9nFD2kcPvEmSPWvzrFPeshEB4oEiUIe+Ouzi4R4iii6ivyiWOKY7q0Nigk14iITHd/HMv9VDy7K4WSIhYT5WEB81o+cXVbRcO35+KUrEtQhqOgaET8s1HVeHpzO8fgT1k3gQKleF3u+Kzqdtct+64bXxBc+64dX8HqlvuUiqHIJUrr4mlY0Fc9dkY2qYzqNPreBofCOlLNPLHM+6an5vpZnfv7rncL6BYrbfkNxtxSypHR+V7C0SNlzNV612PLxPtWOQQb34qGo06msWWSomVq3Djh7UWtFyrGhpxKgaRUELioL7RNHt5X0gT+06iUZtE89Jsuk3p2lZnXnYIOVlm1TycrP0gYnK7PJ4x7a++pZb32UoBw2UX7VB+dVfBmVLw2R5jse7r+C/vC01jNoV9Ua7KOptnM13GJaI/Nq9kiocbVW+v2NVvOUkF4nmVYPksB3J4Y4rtz+OZUdzHGw7FLs2yIqYZJZ8gH+y5It8qjm6bVZS0V32CTadpGCJALYA/QObcogecOGg8+CXPOHPxtd/BpGGuvkwgC4xBKwoyuPg6YO/Y/2Z/Ndj5yxg6BB5+RAN2Bj9M2VhpslrH70MTTyYgqUcjUOObj6jHLzwvNoOu9bQH10yoDhQna5eqMmlwXVf42Bhp27u5uXGrT0l417KZZZCKvHpagNpapTcGpG/TgGpUfCRxTHA2xc4c3QepoPH4j3g69/E23ygCQCvxPXmSkMS+OOYnzPx5h9cEHegIL3+8/pXaFDdVOMpIB+z9DFKRNd8HLBTNkq5Nic3YLGXs/SpGAey1pijcIwyFoEroLfe9a/oMn8MYzExpNdXPcQMlbHWZpKszeTygPDpe9FsaWZD+/J1E2q149mo8XwEMJ7k4zEDJWXytc1XijR0BrcVDDearxThYSaoGcNVJScNPRzAeEdeWkoWbufAWsr8Ec/AmzJ+/RsojiPol2mP5CjdKEvQOM8yMAG8SoxQm+yLeJMUfPFUvH/qARwZOJByl4ev45jF5/LN0kyuYtGkZ6jHxOwxGAOGCKX/I4yGTN4u1tUYgaUBE55WtWPAsuL91UwZ82h9DzO29LBvl3IaHmbRhfihXpWpuV29ltOuavOyVqlppvybP1rVaP5YrNFQzcbEcBzXEd+HWo57Bzd1GxdoRFXo21doltFWvN53eOtXrV/alaMXacOaaeu2axnEsl3quFaL0tqarz/hdspYa+tUY8f4Ht/n9ZMkYl48g+HTIpKVeb7P5uTdcJgxLrchZYHENFch63sTqTLZ1mNJv/jFAIuftlv76Z1ae/HqhWWsvfYTfxRBzhsmUcBSsbldXP6T6u8t5G+Mih9ZPf8/UEsHCFrfzszPCQAAljUAAFBLAQIUABQACAAIAAO77zxa387MzwkAAJY1AAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAACQoAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" /> | ||
− | + | =Beweisfindung= | |
− | + | ==ikonisches/halbikonisches Beweisen== | |
<ggb_applet width="1080" height="620" version="3.2" ggbBase64="UEsDBBQACAAIANOV7zwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V1Jc9s4Fj5P/wqUpqorOYjBxq1jd5fjbO44k6k401M1lxRFwRJjilRIytuf6cv8gd7S6833/k3zAJCyKFKyKFm27OlcZIEgCLzvfW8BHpWtr04HIToWSRrE0XaLGLiFROTH3SDqbbdG2WHbaX315WdbPRH3RCfx0GGcDLxsu8UM2pLto+DLz/62lfbjE+SFqss3gTjZbh16YSpaKB0mwuumfSGyUrs3Og3CwEvO3nQ+CD9LLy/oQfai4QiekiUjaPMH3f0gLb4+Ug8chkH2NDgOuiJBYexvtywTpg5/fSOSLPC9cLvFsW6hsC7HLV2EJiav9uMkOI+jTHa/HPwQWhBKg3MBd1LZtvVILXRLjPww6AZeJBej5gGdEDoJulkf+mJHjimCXh8maxFHD+fHcdI9OEszMUCn/xFJvN2ihEtJn+lvTH9LYWLwRBOrS5Pf1DDi+EBkGeCSIu9UXEqslwTd0pe99EkcXjYN4yDKdr1hNkoUqCxvOsjO5APgWYmc8E7UC0XeRkHmfeEfdeLTAy0Fpod+dzZUt6gJdXq7cRgnKIEbTBM65J8d/an6yJmOe2HVB6se+Rhy0PF14lLVQ3129KfqFQaRnlq+clKsmuDiMUGKZIMUI+jiePGh1xGAbQuNoiDbL76ADhzlSyX6hn+MBh0gwaQWjMck1zXm1qMp/dk6EkkkQq0kEWA7ikcpOpbaqJ+lJtIVfjCAr/pCLhJPwvUvmIBu7YpeIoqJawppgamreFIRp5q3HhWTkHNIYa5+BrYA1pPJtTwRJyJID4OoO4p6sOIuylsu/ugn0CSpnAGNpAi6XgZ3SLMgQjEQQKJM6YtSt7HcXrfGFiNW5C9onl+/RAAu1+qO0jIvHPY9aCnoEXpnYAoml6vGex13y0I4DE5FV7dcPklJJkWn2602NpgF9JO20HZa6FwbRdVL00YyXt3Ockz1Wq9Y9ZP3pLruskJNQH4bK2cG4/nCLdps4X48GHigGpE3gIXvBokfCrXaQJpx5GGJOvKIFoNe4SgrLvl6uHyQihxBKwN/LCS/VTYIWR94F4k0VVYrm7RPs1VsAUnj5eW80OTASYjoGKYWJylCpzj3vWdYPxCdFy2nRCmlvEbypnMygQ144yQ4RTtF/52i1w44uTbBBie2hcf/YB47LH/GDpd/SHXfMWVfqfB6ch8jvYBUG7R0CCboMPDn4/5PpfBl2P0K2jvz0S6zZmcFW2GS1SnjRWB5lTkE7z2UA0jbPhSimwu5wBQNYUjlXid0a8KqgIPnFmWWQ7hLXAebOdM4ZdSyOTYxtm2LWKvwbh/0bkr8O5p1rysoePNRkCo8FrK3JOUaW7cVOFc24KZlM2q63HUpZY62asywnCkEQNRtC5qhm0ktbpucm24TDk/RJBhAVOoH2XyY9qIMogKQUIUqCiuvgtXT3HQ2Ic7TK4gzAw2LKzjkR0d/XAMg69H9uc72ls1GyanSybVzWy2eGoRN6+jyxF/M8O420Z/dpSRIMZ+gs5TkrRtealgWx9yB1IxjiplWPm5YtsttiQwmxOTuKuI/ED3ZPgXA7izT25mPQ5qPVki6M9v6mssEPBBOdQMtWej+Ju/dvwHLTA2wtGWhKyowPAWQtMvMwKbNXE6YQ0zCLXOOXZ6Wwzy7rKAIpcaM7TDIopp0HQkxlNnum+hd4kWp3PYoh85L6sNORR+6zfShu/kB8KT5o6ZFseMwgjGzHVunVhBqMocSx7EZN4lt25p+pkE4BUdAKeUONe15mDfxxbeN+ZMK5qIZ5uIuYU4Nk1ObM4sTTFwAXrs803BdTB3uuCYD6LXDa1MCGgIxAOeuYzumie885juzMD9shvnhbMz5xmEOQbdNGFhpAibe4WDkHQW6bTCbcptZ1HWYa2HtZ9sEwiLbdQBt6prYcYud0oVWe7dQ7zVDvXeXmL5O1G+d6+J0mMBMZKCUi/WdOM0gCoUL263PP47i7PFBlgj/SKDd1+gkSLpIwBTEuQj8fiQy9PnfCX784BgG2DfQcZz0RE90RPRQ36ueV1aGDB7QKj9tY8O6NPOSTCUeSKqCZRDiTvxz8jAbT2w9wT9zMs6enc114jgUXjReZ1/JAR4/EhVQV9lIXnz9bw4PU4AUVsqpjltdcy5JvKECQ7Ud+P0kyDJEvrgqjwvPenE0K5FAHq2zMN8EMJ5/RHS3znuiO/rqD7bdGlyV9+mHFlIbD3e9hqheP4MqPsRkk3n4JESkiYrO1q5KhvV+Exe7eWnW7ZvkuTD69wvGRfcxuVW/kbnZznUukoN7heOMfKhdmxDd5Xyo3n29LvY9lFfaneW+qO7mv6e646BwX54+MWzswOitKRGmpVqIG/BgUmobuNqlOTPD9LXrz3DWdYRzG5bvFn3YOoBsz9gArN3/a9+tDcD5SHr3DMl7HFXWJvq0lOj3QpnUp35fREdh0BPowTsRhO2HTxMRqB0AleufiKQrItQTh6NI/iGrpQZechSIJFs86aerJv01KrGupB+7pX+5Tth0uTQ/2Kg0X29hgDFqnOfTK/J8VWpZHybtzsry//xufhSk6gHHMoHeU6LEBndtiDcJdSxsE8sqSLlYyUa9pn2oyr2oBNWSV6ZoLHu2oLaxOeaCTZkLL/EvD2qtojEM45O34jAUp0rWFW0SA5iSrN19Oy59nerTDL3xQY9Cr3rm++f3jdD7fjn0mpmJhuDxBcGrlOxuPHg7JerVgPdDI/B+mAYP7KBNHfCGrkMc22brQK7IXAufX6q9MO8tdLul5LIGuh8bQffjNHSmQYEFLiEYoh/imNZf2C2IXX1UxUpRVTcQ6CiOeiBACOci9ASGT0+C6EiECwRU6nTlYHSA0jgM5e3d8hCpl52jIxFF+Y1edCLkKA3OX9iqoVgN2msLxaxxWd3M6KsWE17C5ClgcjAaDASIM0VJnHpKeL3k4g8pyH9r0aKOCNCuBkkkvaCToQDuSeQJGPR6K/x+Nu6NHsiXdF4kF58uvhXIxQ8fq/u8kd9HAEkEA8kXkPx+3IF75EHa4gjxVRGKbwohalA6eRRG9JYGN1xnsWi5XKD37LbfJriuCj2Qi5YEnZLEaiWgz++dfLhhrlKl+DbOvGzafz7T/rP94M/vH2of+rziQ5997g3j9PF8RzqlnPkty0GwjiJkUC5qutRyCMMEW9QqNhSJxU3uWJZNueVQtoqE6wKUQhJKzM+1iJ9Vw5SfGoUpP12ZHjgrxyk1dnFedrD2MMW8iRCzniOTEAJTfriKKUvzZeNYwwy75LPyGEOaIjzly9ZCmzryXEq3TKFPjSj06aokDdN1UGje1uz9oFDNS0jPCgCnMTuaD1npJaSjO/USEjFM7bX1u3zK0zDOJzkzb5Prel40qoHiuYaiYqhKsIQNYAnvFCyO4TjEdoDkNhgtatJnbVKkTWbZ0hVHiw5fO051r+8cVVB50cShvFjSiYBM9Bv41NzACBhAAgNNbIvb2HQgWrv2t6bCithfNhH7y/skdlO+OZUL2qQgeLPe+a/0rnid839Rcvgvq67+50au/udpV88Nm1DmOK6DmQNRv3uVp598W/6G9hDmOflpq1Ny8gQv5uWbFri/mOXEo/lgTJ+LRzdyKr6+XZ1SSjlBDmLbZYdvGcylk+bqmvzIrb3ikMcOVT4Om2nA8N5oADFs22Km5TAXQjtqYhPiCTOv0uRl48mKV9xMd9KDNeH5hlRGmKX94sHFp15oIP2jMKk+ABdfLL6Bay73ovp69mi5wZzqHq1pYDZV5rBMdcOHjapuyGs1qDVX1euqG1ilumFeSLR3VUi05p/7ubYXydnS+7DzxPP1fdmmbmODXs9GdU3auqddz9cV1/OxQar68VpS1evk49wKWJwXUxWHIuBRiurh9aWi9Z5/pviTZp4/uTeef63w3ECE9zroDmvS35lAv2qSBb9azuSv5bdnIEQj09nqug7T9sZHBN/lRwSvKoLca344sLfYscANCpUZmLjYZTbHlukyi7PiNM12HIiEIaV2bNvm174zsDd5IPBKy3ivuj/wS6P9gV/u7mlaE4tz8wVb9SSZcZo2kypLE2bjaAO2qFwvbRa0uf4DtL3qAVrBl1kHaL82Ys2vd/cA7e6yZoo7V7qZa2HQxvEIG/LXJi7dDBm/HSa9ErYo+CTwTGylH1O8klSzqTWLYL81IthvV7ol+y+3tB6CTdHsx5k0229Cqv2NohAt/VyH69o3VNmxP5sxs3jzeyPe/L728vv/E7dUv/trVaqF92SFdV5yrQqHPwhZOpy/GpeinSe7qCOy5OK/vQwRBxt55bYsz774owNCmR7hoepxAGOnIjvPUBr4fdQPoKc3ShG9rEqmU3XJETofpR6MEOmHPPUSecdhHPayL3S1MslvSdQARI+V1ymnATQVI6C+F3ZQGkP/+OJb9MDFD43Ft7WthX8/85bLkq18JyP/3fNlNrbjDdzYZqT5z/Pwysb2o8lfxJffi/8G48v/AVBLBwgY4h4VHg0AADhjAABQSwECFAAUAAgACADTle88GOIeFR4NAAA4YwAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAFgNAAAAAA==" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" /> | <ggb_applet width="1080" height="620" version="3.2" ggbBase64="UEsDBBQACAAIANOV7zwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V1Jc9s4Fj5P/wqUpqorOYjBxq1jd5fjbO44k6k401M1lxRFwRJjilRIytuf6cv8gd7S6833/k3zAJCyKFKyKFm27OlcZIEgCLzvfW8BHpWtr04HIToWSRrE0XaLGLiFROTH3SDqbbdG2WHbaX315WdbPRH3RCfx0GGcDLxsu8UM2pLto+DLz/62lfbjE+SFqss3gTjZbh16YSpaKB0mwuumfSGyUrs3Og3CwEvO3nQ+CD9LLy/oQfai4QiekiUjaPMH3f0gLb4+Ug8chkH2NDgOuiJBYexvtywTpg5/fSOSLPC9cLvFsW6hsC7HLV2EJiav9uMkOI+jTHa/HPwQWhBKg3MBd1LZtvVILXRLjPww6AZeJBej5gGdEDoJulkf+mJHjimCXh8maxFHD+fHcdI9OEszMUCn/xFJvN2ihEtJn+lvTH9LYWLwRBOrS5Pf1DDi+EBkGeCSIu9UXEqslwTd0pe99EkcXjYN4yDKdr1hNkoUqCxvOsjO5APgWYmc8E7UC0XeRkHmfeEfdeLTAy0Fpod+dzZUt6gJdXq7cRgnKIEbTBM65J8d/an6yJmOe2HVB6se+Rhy0PF14lLVQ3129KfqFQaRnlq+clKsmuDiMUGKZIMUI+jiePGh1xGAbQuNoiDbL76ADhzlSyX6hn+MBh0gwaQWjMck1zXm1qMp/dk6EkkkQq0kEWA7ikcpOpbaqJ+lJtIVfjCAr/pCLhJPwvUvmIBu7YpeIoqJawppgamreFIRp5q3HhWTkHNIYa5+BrYA1pPJtTwRJyJID4OoO4p6sOIuylsu/ugn0CSpnAGNpAi6XgZ3SLMgQjEQQKJM6YtSt7HcXrfGFiNW5C9onl+/RAAu1+qO0jIvHPY9aCnoEXpnYAoml6vGex13y0I4DE5FV7dcPklJJkWn2602NpgF9JO20HZa6FwbRdVL00YyXt3Ockz1Wq9Y9ZP3pLruskJNQH4bK2cG4/nCLdps4X48GHigGpE3gIXvBokfCrXaQJpx5GGJOvKIFoNe4SgrLvl6uHyQihxBKwN/LCS/VTYIWR94F4k0VVYrm7RPs1VsAUnj5eW80OTASYjoGKYWJylCpzj3vWdYPxCdFy2nRCmlvEbypnMygQ144yQ4RTtF/52i1w44uTbBBie2hcf/YB47LH/GDpd/SHXfMWVfqfB6ch8jvYBUG7R0CCboMPDn4/5PpfBl2P0K2jvz0S6zZmcFW2GS1SnjRWB5lTkE7z2UA0jbPhSimwu5wBQNYUjlXid0a8KqgIPnFmWWQ7hLXAebOdM4ZdSyOTYxtm2LWKvwbh/0bkr8O5p1rysoePNRkCo8FrK3JOUaW7cVOFc24KZlM2q63HUpZY62asywnCkEQNRtC5qhm0ktbpucm24TDk/RJBhAVOoH2XyY9qIMogKQUIUqCiuvgtXT3HQ2Ic7TK4gzAw2LKzjkR0d/XAMg69H9uc72ls1GyanSybVzWy2eGoRN6+jyxF/M8O420Z/dpSRIMZ+gs5TkrRtealgWx9yB1IxjiplWPm5YtsttiQwmxOTuKuI/ED3ZPgXA7izT25mPQ5qPVki6M9v6mssEPBBOdQMtWej+Ju/dvwHLTA2wtGWhKyowPAWQtMvMwKbNXE6YQ0zCLXOOXZ6Wwzy7rKAIpcaM7TDIopp0HQkxlNnum+hd4kWp3PYoh85L6sNORR+6zfShu/kB8KT5o6ZFseMwgjGzHVunVhBqMocSx7EZN4lt25p+pkE4BUdAKeUONe15mDfxxbeN+ZMK5qIZ5uIuYU4Nk1ObM4sTTFwAXrs803BdTB3uuCYD6LXDa1MCGgIxAOeuYzumie885juzMD9shvnhbMz5xmEOQbdNGFhpAibe4WDkHQW6bTCbcptZ1HWYa2HtZ9sEwiLbdQBt6prYcYud0oVWe7dQ7zVDvXeXmL5O1G+d6+J0mMBMZKCUi/WdOM0gCoUL263PP47i7PFBlgj/SKDd1+gkSLpIwBTEuQj8fiQy9PnfCX784BgG2DfQcZz0RE90RPRQ36ueV1aGDB7QKj9tY8O6NPOSTCUeSKqCZRDiTvxz8jAbT2w9wT9zMs6enc114jgUXjReZ1/JAR4/EhVQV9lIXnz9bw4PU4AUVsqpjltdcy5JvKECQ7Ud+P0kyDJEvrgqjwvPenE0K5FAHq2zMN8EMJ5/RHS3znuiO/rqD7bdGlyV9+mHFlIbD3e9hqheP4MqPsRkk3n4JESkiYrO1q5KhvV+Exe7eWnW7ZvkuTD69wvGRfcxuVW/kbnZznUukoN7heOMfKhdmxDd5Xyo3n29LvY9lFfaneW+qO7mv6e646BwX54+MWzswOitKRGmpVqIG/BgUmobuNqlOTPD9LXrz3DWdYRzG5bvFn3YOoBsz9gArN3/a9+tDcD5SHr3DMl7HFXWJvq0lOj3QpnUp35fREdh0BPowTsRhO2HTxMRqB0AleufiKQrItQTh6NI/iGrpQZechSIJFs86aerJv01KrGupB+7pX+5Tth0uTQ/2Kg0X29hgDFqnOfTK/J8VWpZHybtzsry//xufhSk6gHHMoHeU6LEBndtiDcJdSxsE8sqSLlYyUa9pn2oyr2oBNWSV6ZoLHu2oLaxOeaCTZkLL/EvD2qtojEM45O34jAUp0rWFW0SA5iSrN19Oy59nerTDL3xQY9Cr3rm++f3jdD7fjn0mpmJhuDxBcGrlOxuPHg7JerVgPdDI/B+mAYP7KBNHfCGrkMc22brQK7IXAufX6q9MO8tdLul5LIGuh8bQffjNHSmQYEFLiEYoh/imNZf2C2IXX1UxUpRVTcQ6CiOeiBACOci9ASGT0+C6EiECwRU6nTlYHSA0jgM5e3d8hCpl52jIxFF+Y1edCLkKA3OX9iqoVgN2msLxaxxWd3M6KsWE17C5ClgcjAaDASIM0VJnHpKeL3k4g8pyH9r0aKOCNCuBkkkvaCToQDuSeQJGPR6K/x+Nu6NHsiXdF4kF58uvhXIxQ8fq/u8kd9HAEkEA8kXkPx+3IF75EHa4gjxVRGKbwohalA6eRRG9JYGN1xnsWi5XKD37LbfJriuCj2Qi5YEnZLEaiWgz++dfLhhrlKl+DbOvGzafz7T/rP94M/vH2of+rziQ5997g3j9PF8RzqlnPkty0GwjiJkUC5qutRyCMMEW9QqNhSJxU3uWJZNueVQtoqE6wKUQhJKzM+1iJ9Vw5SfGoUpP12ZHjgrxyk1dnFedrD2MMW8iRCzniOTEAJTfriKKUvzZeNYwwy75LPyGEOaIjzly9ZCmzryXEq3TKFPjSj06aokDdN1UGje1uz9oFDNS0jPCgCnMTuaD1npJaSjO/USEjFM7bX1u3zK0zDOJzkzb5Prel40qoHiuYaiYqhKsIQNYAnvFCyO4TjEdoDkNhgtatJnbVKkTWbZ0hVHiw5fO051r+8cVVB50cShvFjSiYBM9Bv41NzACBhAAgNNbIvb2HQgWrv2t6bCithfNhH7y/skdlO+OZUL2qQgeLPe+a/0rnid839Rcvgvq67+50au/udpV88Nm1DmOK6DmQNRv3uVp598W/6G9hDmOflpq1Ny8gQv5uWbFri/mOXEo/lgTJ+LRzdyKr6+XZ1SSjlBDmLbZYdvGcylk+bqmvzIrb3ikMcOVT4Om2nA8N5oADFs22Km5TAXQjtqYhPiCTOv0uRl48mKV9xMd9KDNeH5hlRGmKX94sHFp15oIP2jMKk+ABdfLL6Bay73ovp69mi5wZzqHq1pYDZV5rBMdcOHjapuyGs1qDVX1euqG1ilumFeSLR3VUi05p/7ubYXydnS+7DzxPP1fdmmbmODXs9GdU3auqddz9cV1/OxQar68VpS1evk49wKWJwXUxWHIuBRiurh9aWi9Z5/pviTZp4/uTeef63w3ECE9zroDmvS35lAv2qSBb9azuSv5bdnIEQj09nqug7T9sZHBN/lRwSvKoLca344sLfYscANCpUZmLjYZTbHlukyi7PiNM12HIiEIaV2bNvm174zsDd5IPBKy3ivuj/wS6P9gV/u7mlaE4tz8wVb9SSZcZo2kypLE2bjaAO2qFwvbRa0uf4DtL3qAVrBl1kHaL82Ys2vd/cA7e6yZoo7V7qZa2HQxvEIG/LXJi7dDBm/HSa9ErYo+CTwTGylH1O8klSzqTWLYL81IthvV7ol+y+3tB6CTdHsx5k0229Cqv2NohAt/VyH69o3VNmxP5sxs3jzeyPe/L728vv/E7dUv/trVaqF92SFdV5yrQqHPwhZOpy/GpeinSe7qCOy5OK/vQwRBxt55bYsz774owNCmR7hoepxAGOnIjvPUBr4fdQPoKc3ShG9rEqmU3XJETofpR6MEOmHPPUSecdhHPayL3S1MslvSdQARI+V1ymnATQVI6C+F3ZQGkP/+OJb9MDFD43Ft7WthX8/85bLkq18JyP/3fNlNrbjDdzYZqT5z/Pwysb2o8lfxJffi/8G48v/AVBLBwgY4h4VHg0AADhjAABQSwECFAAUAAgACADTle88GOIeFR4NAAA4YwAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAFgNAAAAAA==" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" /> |
Version vom 18. Juli 2012, 10:25 Uhr
Inhaltsverzeichnis |
Satzfindung
Induktive Satzfindung
Funktionale Betrachtung
Variante 1
Variante 2
Variante 3
Beweisfindung
ikonisches/halbikonisches Beweisen