Serie 05 12 13: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
*m.g.* (Diskussion | Beiträge) (→Aufgabe 5.2) |
*m.g.* (Diskussion | Beiträge) (→Aufgabe 5.2) |
||
Zeile 12: | Zeile 12: | ||
Es sei <math>Z=\begin{pmatrix} 0 \\ 0 \\ d \end{pmatrix}</math>,<math>d \in \mathbb{R}, d > 0</math> | Es sei <math>Z=\begin{pmatrix} 0 \\ 0 \\ d \end{pmatrix}</math>,<math>d \in \mathbb{R}, d > 0</math> | ||
− | Es sei <math>\varepsilon</math> die <math>x-y-</math>Ebene, die wir wiederum als <math>\mathbb{R}^2</math> interpretieren. Wir bilden jedes Element des <math>\mathbb{R}^3</math> mittels der Abbildung <math>ZP_Z</math>auf <math>\varepsilon</math> wie folgt ab: | + | Es sei <math>\varepsilon</math> die <math>x-y-</math>Ebene, die wir wiederum als <math>\mathbb{R}^2</math> interpretieren. Wir bilden jedes Element des <math>\mathbb{R}^3</math> mittels der Abbildung <math>ZP_Z</math>auf <math>\varepsilon</math> wie folgt ab:<br /> |
<math>\forall P=\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R} \setminus Z: ZP_Z(P)=ZP\cap \varepsilon</math> | <math>\forall P=\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R} \setminus Z: ZP_Z(P)=ZP\cap \varepsilon</math> |
Version vom 15. Dezember 2012, 18:42 Uhr
Aufgabe 5.1
Es sei .
Wir definieren die folgende Abbildung
.
Beweisen Sie: ist eine lineare Abbildung.
Interpretieren Sie geometrisch.
Hilfe:
Aufgabe 5.2
Es sei ,
Es sei die Ebene, die wir wiederum als interpretieren. Wir bilden jedes Element des mittels der Abbildung auf wie folgt ab: