Umkehrung des Stufenwinkelsatzes (WS 12 13): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
*m.g.* (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „<div style="margin:0; margin-right:4px; border:1px solid #27408B; padding: 1em 1em 1em 1em; background-color:#FFFF99; align:left;"> {|width=90%| style="background…“) |
*m.g.* (Diskussion | Beiträge) (→Stufenwinkel, Wechselwinkel, entgegengesetzt liegende Winkel) |
||
Zeile 13: | Zeile 13: | ||
::entgegengesetzt liegende Winkel? | ::entgegengesetzt liegende Winkel? | ||
<ggb_applet width="1066" height="509" version="3.2" ggbBase64="UEsDBBQACAAIAKyt7DwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VrdUts4FL7efQpPrnYvMPqXPAPttNACpbvd2e72Ym86TiwSbx07azv8vVVbnqPPtEeSE+LEBAwBAhlmTKRjWfq+cz7pnHjr5ekw8Y51XsRZut3BPup4Ou1lUZz2tzvj8mhDdV6++Hmrr7O+7uahd5Tlw7Dc7lCfdEz7OH7x809bxSA78cLEmnyK9cl25yhMCt3xilGuw6gYaF3W2sPxaZzEYX72ofuv7pXFZYcb5CAdjeEpZT6Gtt4weh8Xk6+b9oGjJC534+M40rmXZL3tjuAwdfjvk87LuBcm2x2GXAuBdUla64QmanoHWR6fZ2lpzC8HP4IWzyvicw13CtO2tWkXuqXHvSSO4jA1i7HzACPPO4mjcgC2VAgYU8f9AUxWIOmG62VZHn08K0o99E7/0Xm23SEE+wFHgUCcM86lkh3vzHVRFPgUE8URdFCBFYAIM4apMOEjjngAf7A0TDCDm67us8/Wxx91WQKZhRee6kuY+3kcTeA1/x8Ur7MkmnaPsjgtd8JROc6tI9Cq6WN5Zp4GyOVmka/SfqKrNgI8DXTvSzc7/eiQo27ov85G9hY7n25/J0uy3MvhBs7BoLp23dXamIlOrZC1QdaiGsMMOu3HAbEW9tp1V2uVxKmbWrVwPFk0RpPHxIVnGmBw47/TxSdhV4M/dLxxGpfvJ1/Ab75US8Xuht/Hwy4EzqznTMfEqxpza3PO57a+6DzViXOsFKgdZ+PCOzYe7J5lJxLpXjyEr66jgiQ0dP0NE3Ctke7nejJxF3YOMNuLZp13rnlrczIJM4cC5torQT9gPaVZiwnvEkJru7Ov4/T8OEz1uK/TjheFpek2gZTooYYoK61zWN+agvSqM5WUzKrDPIqXeEN/o6dYnwqT0SCEFr9aShKegVjMLs6O91sW1ZccpgCdXQ+E7MgMYMgZaR1VAllWHu2NYEgbHzPIW8AK79Q92DuD2DTXc3evNXGhZJTDPpZWPDtIrgHn9TMBR/nKggM6KNqh08uGwzCNvDQcwoPeQ5hbSGKzY3ghMv7jhdgg5VAYl5OO/mfsBquGWIDaaMYUSGNdF5JyAPGa6qKwalfO6lqNECerN+YD3ZiND0dHhS4NfFRa9DYwX0bWJdzER8zeYXEHuDco9xeUcskC9X+psymcXsVD2IF7cdnGd3eeie9uIF9RwQXs4FQGXAhFHRvUxwGihGNJsFIyCFYX97vPBDvlA2iMIhYIghitgCM+l7PAmfPQSjVhx2nCboMmkFaaQFarCbB9RrGDFaw/VMbh6gWDVUhjfDPBAB8HgmY/2A4Ah1NmuSGBT6QKBEOYqwAhwR9YTd48k4jgvqMG9FitTi/ePhN0qM+E81w4RrXE51pVeONU4e2CKgxaaMJg3U4JS6IaordCE8MWFtQ+1bEg8FUAjrj6WK6zcZCWkOcAEHOUmFOXJWWwQMreclLq/r93nf/PeNss5IJZzM2l6y53R51h7ivCQCqrjzuKEaZ8FCBhDgr24zY9JXzI38VtXPxqUMlVoO63AXV/jUClWPmScMYVwUgKQqoTMWGmfiK5kOYkQVHAJ6gSdTtUbZVjDtHXDs89uBCjI/Ow/vi6HFebik9hA2tzP0xmXE0J+wIxppgUWHGiGLuLgGC0KCF4Ke6X5wbifHVDNrKCW+hEmPdmIJ80Jkl28qc+SvSphdn1zhQ/WnDypsbJq0VOvrXi5NsiJ5xK8DUVYElFwCaVpocnZUPiKuF4ArS8qtGyv0jL91a0fF/bUNmQgStpsPUnZb9GymKp5MdFK1Iuro0V9VisYFFttutPyp4jZd+RstMgYNclq/MSVqWrNWIUxVgJSgUOiPnp4d6S1bvF0mQ7b85X14q3nRpvi9nEj+8tefvexBvFiCEBRxsaSEI5XVPeqnBrrkuuFW1va7QtloZ+XLSk7eLJhhshljX6BFjbrbG213Dybsna1xsEm1hL1nBQ5fLBY9O2LGk8uGXSuHalKOJLhQQWQiCFsAwgWgz8yBeYKYK4JBhLEbSt+l9bpTpwHl/9ejVXvaYtKlXGeqW1qmZf766qkDXzc1dVtSLN+c4Nfu7CwIciSgaIECExm8bMw5e4BhM+6QKf79pUY97drsR7L8UYiX3GAkwlg8jAvCpwEZ9yxkA+OSGQo3F11wJX04ZQhce7q/PL64Jk4fRFV5hjtoyRlSSgzaw92jb+h3XbOmtN3n/YxvsPb+f9mLi3juz1XneWG+8r0scKvCqQlCiOySTzQT5DEmGqCPgcxJUU7C4by5IqQBU6h00n4Hahc9EUOnOVgDufpe4lduSTSVsOa6Q1HoDbkfb1er2bJAZrRhqhT6Y4vVdj7aCpttOOtW9PNtQ2xPKXlx4tb+lmWaLDdIpOOA/wjHw/9AtfXLlsQzbXMScnsnBkObRtbwBA7/xEx6X29nQegu0v/c/kV6/oDVIdRzDwoB0g3TUEBF9RIbwakbEHqZQ3CnPwE1jvDDZ0KTabs++62nfCq5fiX/wPUEsHCK9Ctb5NBwAARi8AAFBLAQIUABQACAAIAKyt7DyvQrW+TQcAAEYvAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAhwcAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" /> | <ggb_applet width="1066" height="509" version="3.2" ggbBase64="UEsDBBQACAAIAKyt7DwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VrdUts4FL7efQpPrnYvMPqXPAPttNACpbvd2e72Ym86TiwSbx07azv8vVVbnqPPtEeSE+LEBAwBAhlmTKRjWfq+cz7pnHjr5ekw8Y51XsRZut3BPup4Ou1lUZz2tzvj8mhDdV6++Hmrr7O+7uahd5Tlw7Dc7lCfdEz7OH7x809bxSA78cLEmnyK9cl25yhMCt3xilGuw6gYaF3W2sPxaZzEYX72ofuv7pXFZYcb5CAdjeEpZT6Gtt4weh8Xk6+b9oGjJC534+M40rmXZL3tjuAwdfjvk87LuBcm2x2GXAuBdUla64QmanoHWR6fZ2lpzC8HP4IWzyvicw13CtO2tWkXuqXHvSSO4jA1i7HzACPPO4mjcgC2VAgYU8f9AUxWIOmG62VZHn08K0o99E7/0Xm23SEE+wFHgUCcM86lkh3vzHVRFPgUE8URdFCBFYAIM4apMOEjjngAf7A0TDCDm67us8/Wxx91WQKZhRee6kuY+3kcTeA1/x8Ur7MkmnaPsjgtd8JROc6tI9Cq6WN5Zp4GyOVmka/SfqKrNgI8DXTvSzc7/eiQo27ov85G9hY7n25/J0uy3MvhBs7BoLp23dXamIlOrZC1QdaiGsMMOu3HAbEW9tp1V2uVxKmbWrVwPFk0RpPHxIVnGmBw47/TxSdhV4M/dLxxGpfvJ1/Ab75US8Xuht/Hwy4EzqznTMfEqxpza3PO57a+6DzViXOsFKgdZ+PCOzYe7J5lJxLpXjyEr66jgiQ0dP0NE3Ctke7nejJxF3YOMNuLZp13rnlrczIJM4cC5torQT9gPaVZiwnvEkJru7Ov4/T8OEz1uK/TjheFpek2gZTooYYoK61zWN+agvSqM5WUzKrDPIqXeEN/o6dYnwqT0SCEFr9aShKegVjMLs6O91sW1ZccpgCdXQ+E7MgMYMgZaR1VAllWHu2NYEgbHzPIW8AK79Q92DuD2DTXc3evNXGhZJTDPpZWPDtIrgHn9TMBR/nKggM6KNqh08uGwzCNvDQcwoPeQ5hbSGKzY3ghMv7jhdgg5VAYl5OO/mfsBquGWIDaaMYUSGNdF5JyAPGa6qKwalfO6lqNECerN+YD3ZiND0dHhS4NfFRa9DYwX0bWJdzER8zeYXEHuDco9xeUcskC9X+psymcXsVD2IF7cdnGd3eeie9uIF9RwQXs4FQGXAhFHRvUxwGihGNJsFIyCFYX97vPBDvlA2iMIhYIghitgCM+l7PAmfPQSjVhx2nCboMmkFaaQFarCbB9RrGDFaw/VMbh6gWDVUhjfDPBAB8HgmY/2A4Ah1NmuSGBT6QKBEOYqwAhwR9YTd48k4jgvqMG9FitTi/ePhN0qM+E81w4RrXE51pVeONU4e2CKgxaaMJg3U4JS6IaordCE8MWFtQ+1bEg8FUAjrj6WK6zcZCWkOcAEHOUmFOXJWWwQMreclLq/r93nf/PeNss5IJZzM2l6y53R51h7ivCQCqrjzuKEaZ8FCBhDgr24zY9JXzI38VtXPxqUMlVoO63AXV/jUClWPmScMYVwUgKQqoTMWGmfiK5kOYkQVHAJ6gSdTtUbZVjDtHXDs89uBCjI/Ow/vi6HFebik9hA2tzP0xmXE0J+wIxppgUWHGiGLuLgGC0KCF4Ke6X5wbifHVDNrKCW+hEmPdmIJ80Jkl28qc+SvSphdn1zhQ/WnDypsbJq0VOvrXi5NsiJ5xK8DUVYElFwCaVpocnZUPiKuF4ArS8qtGyv0jL91a0fF/bUNmQgStpsPUnZb9GymKp5MdFK1Iuro0V9VisYFFttutPyp4jZd+RstMgYNclq/MSVqWrNWIUxVgJSgUOiPnp4d6S1bvF0mQ7b85X14q3nRpvi9nEj+8tefvexBvFiCEBRxsaSEI5XVPeqnBrrkuuFW1va7QtloZ+XLSk7eLJhhshljX6BFjbrbG213Dybsna1xsEm1hL1nBQ5fLBY9O2LGk8uGXSuHalKOJLhQQWQiCFsAwgWgz8yBeYKYK4JBhLEbSt+l9bpTpwHl/9ejVXvaYtKlXGeqW1qmZf766qkDXzc1dVtSLN+c4Nfu7CwIciSgaIECExm8bMw5e4BhM+6QKf79pUY97drsR7L8UYiX3GAkwlg8jAvCpwEZ9yxkA+OSGQo3F11wJX04ZQhce7q/PL64Jk4fRFV5hjtoyRlSSgzaw92jb+h3XbOmtN3n/YxvsPb+f9mLi3juz1XneWG+8r0scKvCqQlCiOySTzQT5DEmGqCPgcxJUU7C4by5IqQBU6h00n4Hahc9EUOnOVgDufpe4lduSTSVsOa6Q1HoDbkfb1er2bJAZrRhqhT6Y4vVdj7aCpttOOtW9PNtQ2xPKXlx4tb+lmWaLDdIpOOA/wjHw/9AtfXLlsQzbXMScnsnBkObRtbwBA7/xEx6X29nQegu0v/c/kV6/oDVIdRzDwoB0g3TUEBF9RIbwakbEHqZQ3CnPwE1jvDDZ0KTabs++62nfCq5fiX/wPUEsHCK9Ctb5NBwAARi8AAFBLAQIUABQACAAIAKyt7DyvQrW+TQcAAEYvAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAhwcAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" /> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Die Umkehrung des Stufenwinkelsatzes == | == Die Umkehrung des Stufenwinkelsatzes == |
Version vom 20. Januar 2013, 17:28 Uhr
Stufenwinkel, Wechselwinkel, entgegengesetzt liegende WinkelIn welchen Fällen handelt es sich um....
Die Umkehrung des StufenwinkelsatzesSatz X.1: (Umkehrung des Stufenwinkelsatzes)
Beweis von Satz X.1: (Umkehrung des Stufenwinkelsatzes)Es seien und drei paarweise nicht identische Geraden. Die Gerade möge in dem Punkt und die Gerade in dem Punkt schneiden. und sei ein Paar von Stufenwinkeln, welches bei dem Schnitt von und mit entstehen möge. Voraussetzung: (i) Behauptung:
Annahme:
Den Rest können Sie selbst! |