Umkehrung des Stufenwinkelsatzes (WS 12 13): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „<div style="margin:0; margin-right:4px; border:1px solid #27408B; padding: 1em 1em 1em 1em; background-color:#FFFF99; align:left;"> {|width=90%| style="background…“)
 
(Stufenwinkel, Wechselwinkel, entgegengesetzt liegende Winkel)
Zeile 13: Zeile 13:
 
::entgegengesetzt liegende Winkel?
 
::entgegengesetzt liegende Winkel?
 
<ggb_applet width="1066" height="509"  version="3.2" ggbBase64="UEsDBBQACAAIAKyt7DwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VrdUts4FL7efQpPrnYvMPqXPAPttNACpbvd2e72Ym86TiwSbx07azv8vVVbnqPPtEeSE+LEBAwBAhlmTKRjWfq+cz7pnHjr5ekw8Y51XsRZut3BPup4Ou1lUZz2tzvj8mhDdV6++Hmrr7O+7uahd5Tlw7Dc7lCfdEz7OH7x809bxSA78cLEmnyK9cl25yhMCt3xilGuw6gYaF3W2sPxaZzEYX72ofuv7pXFZYcb5CAdjeEpZT6Gtt4weh8Xk6+b9oGjJC534+M40rmXZL3tjuAwdfjvk87LuBcm2x2GXAuBdUla64QmanoHWR6fZ2lpzC8HP4IWzyvicw13CtO2tWkXuqXHvSSO4jA1i7HzACPPO4mjcgC2VAgYU8f9AUxWIOmG62VZHn08K0o99E7/0Xm23SEE+wFHgUCcM86lkh3vzHVRFPgUE8URdFCBFYAIM4apMOEjjngAf7A0TDCDm67us8/Wxx91WQKZhRee6kuY+3kcTeA1/x8Ur7MkmnaPsjgtd8JROc6tI9Cq6WN5Zp4GyOVmka/SfqKrNgI8DXTvSzc7/eiQo27ov85G9hY7n25/J0uy3MvhBs7BoLp23dXamIlOrZC1QdaiGsMMOu3HAbEW9tp1V2uVxKmbWrVwPFk0RpPHxIVnGmBw47/TxSdhV4M/dLxxGpfvJ1/Ab75US8Xuht/Hwy4EzqznTMfEqxpza3PO57a+6DzViXOsFKgdZ+PCOzYe7J5lJxLpXjyEr66jgiQ0dP0NE3Ctke7nejJxF3YOMNuLZp13rnlrczIJM4cC5torQT9gPaVZiwnvEkJru7Ov4/T8OEz1uK/TjheFpek2gZTooYYoK61zWN+agvSqM5WUzKrDPIqXeEN/o6dYnwqT0SCEFr9aShKegVjMLs6O91sW1ZccpgCdXQ+E7MgMYMgZaR1VAllWHu2NYEgbHzPIW8AK79Q92DuD2DTXc3evNXGhZJTDPpZWPDtIrgHn9TMBR/nKggM6KNqh08uGwzCNvDQcwoPeQ5hbSGKzY3ghMv7jhdgg5VAYl5OO/mfsBquGWIDaaMYUSGNdF5JyAPGa6qKwalfO6lqNECerN+YD3ZiND0dHhS4NfFRa9DYwX0bWJdzER8zeYXEHuDco9xeUcskC9X+psymcXsVD2IF7cdnGd3eeie9uIF9RwQXs4FQGXAhFHRvUxwGihGNJsFIyCFYX97vPBDvlA2iMIhYIghitgCM+l7PAmfPQSjVhx2nCboMmkFaaQFarCbB9RrGDFaw/VMbh6gWDVUhjfDPBAB8HgmY/2A4Ah1NmuSGBT6QKBEOYqwAhwR9YTd48k4jgvqMG9FitTi/ePhN0qM+E81w4RrXE51pVeONU4e2CKgxaaMJg3U4JS6IaordCE8MWFtQ+1bEg8FUAjrj6WK6zcZCWkOcAEHOUmFOXJWWwQMreclLq/r93nf/PeNss5IJZzM2l6y53R51h7ivCQCqrjzuKEaZ8FCBhDgr24zY9JXzI38VtXPxqUMlVoO63AXV/jUClWPmScMYVwUgKQqoTMWGmfiK5kOYkQVHAJ6gSdTtUbZVjDtHXDs89uBCjI/Ow/vi6HFebik9hA2tzP0xmXE0J+wIxppgUWHGiGLuLgGC0KCF4Ke6X5wbifHVDNrKCW+hEmPdmIJ80Jkl28qc+SvSphdn1zhQ/WnDypsbJq0VOvrXi5NsiJ5xK8DUVYElFwCaVpocnZUPiKuF4ArS8qtGyv0jL91a0fF/bUNmQgStpsPUnZb9GymKp5MdFK1Iuro0V9VisYFFttutPyp4jZd+RstMgYNclq/MSVqWrNWIUxVgJSgUOiPnp4d6S1bvF0mQ7b85X14q3nRpvi9nEj+8tefvexBvFiCEBRxsaSEI5XVPeqnBrrkuuFW1va7QtloZ+XLSk7eLJhhshljX6BFjbrbG213Dybsna1xsEm1hL1nBQ5fLBY9O2LGk8uGXSuHalKOJLhQQWQiCFsAwgWgz8yBeYKYK4JBhLEbSt+l9bpTpwHl/9ejVXvaYtKlXGeqW1qmZf766qkDXzc1dVtSLN+c4Nfu7CwIciSgaIECExm8bMw5e4BhM+6QKf79pUY97drsR7L8UYiX3GAkwlg8jAvCpwEZ9yxkA+OSGQo3F11wJX04ZQhce7q/PL64Jk4fRFV5hjtoyRlSSgzaw92jb+h3XbOmtN3n/YxvsPb+f9mLi3juz1XneWG+8r0scKvCqQlCiOySTzQT5DEmGqCPgcxJUU7C4by5IqQBU6h00n4Hahc9EUOnOVgDufpe4lduSTSVsOa6Q1HoDbkfb1er2bJAZrRhqhT6Y4vVdj7aCpttOOtW9PNtQ2xPKXlx4tb+lmWaLDdIpOOA/wjHw/9AtfXLlsQzbXMScnsnBkObRtbwBA7/xEx6X29nQegu0v/c/kV6/oDVIdRzDwoB0g3TUEBF9RIbwakbEHqZQ3CnPwE1jvDDZ0KTabs++62nfCq5fiX/wPUEsHCK9Ctb5NBwAARi8AAFBLAQIUABQACAAIAKyt7DyvQrW+TQcAAEYvAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAhwcAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 
<ggb_applet width="1066" height="509"  version="3.2" ggbBase64="UEsDBBQACAAIAKyt7DwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VrdUts4FL7efQpPrnYvMPqXPAPttNACpbvd2e72Ym86TiwSbx07azv8vVVbnqPPtEeSE+LEBAwBAhlmTKRjWfq+cz7pnHjr5ekw8Y51XsRZut3BPup4Ou1lUZz2tzvj8mhDdV6++Hmrr7O+7uahd5Tlw7Dc7lCfdEz7OH7x809bxSA78cLEmnyK9cl25yhMCt3xilGuw6gYaF3W2sPxaZzEYX72ofuv7pXFZYcb5CAdjeEpZT6Gtt4weh8Xk6+b9oGjJC534+M40rmXZL3tjuAwdfjvk87LuBcm2x2GXAuBdUla64QmanoHWR6fZ2lpzC8HP4IWzyvicw13CtO2tWkXuqXHvSSO4jA1i7HzACPPO4mjcgC2VAgYU8f9AUxWIOmG62VZHn08K0o99E7/0Xm23SEE+wFHgUCcM86lkh3vzHVRFPgUE8URdFCBFYAIM4apMOEjjngAf7A0TDCDm67us8/Wxx91WQKZhRee6kuY+3kcTeA1/x8Ur7MkmnaPsjgtd8JROc6tI9Cq6WN5Zp4GyOVmka/SfqKrNgI8DXTvSzc7/eiQo27ov85G9hY7n25/J0uy3MvhBs7BoLp23dXamIlOrZC1QdaiGsMMOu3HAbEW9tp1V2uVxKmbWrVwPFk0RpPHxIVnGmBw47/TxSdhV4M/dLxxGpfvJ1/Ab75US8Xuht/Hwy4EzqznTMfEqxpza3PO57a+6DzViXOsFKgdZ+PCOzYe7J5lJxLpXjyEr66jgiQ0dP0NE3Ctke7nejJxF3YOMNuLZp13rnlrczIJM4cC5torQT9gPaVZiwnvEkJru7Ov4/T8OEz1uK/TjheFpek2gZTooYYoK61zWN+agvSqM5WUzKrDPIqXeEN/o6dYnwqT0SCEFr9aShKegVjMLs6O91sW1ZccpgCdXQ+E7MgMYMgZaR1VAllWHu2NYEgbHzPIW8AK79Q92DuD2DTXc3evNXGhZJTDPpZWPDtIrgHn9TMBR/nKggM6KNqh08uGwzCNvDQcwoPeQ5hbSGKzY3ghMv7jhdgg5VAYl5OO/mfsBquGWIDaaMYUSGNdF5JyAPGa6qKwalfO6lqNECerN+YD3ZiND0dHhS4NfFRa9DYwX0bWJdzER8zeYXEHuDco9xeUcskC9X+psymcXsVD2IF7cdnGd3eeie9uIF9RwQXs4FQGXAhFHRvUxwGihGNJsFIyCFYX97vPBDvlA2iMIhYIghitgCM+l7PAmfPQSjVhx2nCboMmkFaaQFarCbB9RrGDFaw/VMbh6gWDVUhjfDPBAB8HgmY/2A4Ah1NmuSGBT6QKBEOYqwAhwR9YTd48k4jgvqMG9FitTi/ePhN0qM+E81w4RrXE51pVeONU4e2CKgxaaMJg3U4JS6IaordCE8MWFtQ+1bEg8FUAjrj6WK6zcZCWkOcAEHOUmFOXJWWwQMreclLq/r93nf/PeNss5IJZzM2l6y53R51h7ivCQCqrjzuKEaZ8FCBhDgr24zY9JXzI38VtXPxqUMlVoO63AXV/jUClWPmScMYVwUgKQqoTMWGmfiK5kOYkQVHAJ6gSdTtUbZVjDtHXDs89uBCjI/Ow/vi6HFebik9hA2tzP0xmXE0J+wIxppgUWHGiGLuLgGC0KCF4Ke6X5wbifHVDNrKCW+hEmPdmIJ80Jkl28qc+SvSphdn1zhQ/WnDypsbJq0VOvrXi5NsiJ5xK8DUVYElFwCaVpocnZUPiKuF4ArS8qtGyv0jL91a0fF/bUNmQgStpsPUnZb9GymKp5MdFK1Iuro0V9VisYFFttutPyp4jZd+RstMgYNclq/MSVqWrNWIUxVgJSgUOiPnp4d6S1bvF0mQ7b85X14q3nRpvi9nEj+8tefvexBvFiCEBRxsaSEI5XVPeqnBrrkuuFW1va7QtloZ+XLSk7eLJhhshljX6BFjbrbG213Dybsna1xsEm1hL1nBQ5fLBY9O2LGk8uGXSuHalKOJLhQQWQiCFsAwgWgz8yBeYKYK4JBhLEbSt+l9bpTpwHl/9ejVXvaYtKlXGeqW1qmZf766qkDXzc1dVtSLN+c4Nfu7CwIciSgaIECExm8bMw5e4BhM+6QKf79pUY97drsR7L8UYiX3GAkwlg8jAvCpwEZ9yxkA+OSGQo3F11wJX04ZQhce7q/PL64Jk4fRFV5hjtoyRlSSgzaw92jb+h3XbOmtN3n/YxvsPb+f9mLi3juz1XneWG+8r0scKvCqQlCiOySTzQT5DEmGqCPgcxJUU7C4by5IqQBU6h00n4Hahc9EUOnOVgDufpe4lduSTSVsOa6Q1HoDbkfb1er2bJAZrRhqhT6Y4vVdj7aCpttOOtW9PNtQ2xPKXlx4tb+lmWaLDdIpOOA/wjHw/9AtfXLlsQzbXMScnsnBkObRtbwBA7/xEx6X29nQegu0v/c/kV6/oDVIdRzDwoB0g3TUEBF9RIbwakbEHqZQ3CnPwE1jvDDZ0KTabs++62nfCq5fiX/wPUEsHCK9Ctb5NBwAARi8AAFBLAQIUABQACAAIAKyt7DyvQrW+TQcAAEYvAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAhwcAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 
===== Definition X.1: (Stufenwinkel) =====
 
 
Zwei Winkel <(p,q) und <(r,s) heißen Stufenwinkel,... (ergänzen Sie)
 
 
===== Definition X.2: (Wechselwinkel) =====
 
Zwei Winkel <(p, q) und <(r, s) heißen Wechselwinkel,...(ergänzen Sie)
 
 
===== Definition X.3: (entgegengesetzt liegende Winkel)=====
 
 
Zwei Winkel <math>\angle p,q</math> und <math>\angle r,s</math> sind entgegengesetzt liegende Winkel,...(ergänzen Sie)
 
 
  
 
== Die Umkehrung des Stufenwinkelsatzes ==
 
== Die Umkehrung des Stufenwinkelsatzes ==

Version vom 20. Januar 2013, 17:28 Uhr


Inhaltsverzeichnis

Stufenwinkel, Wechselwinkel, entgegengesetzt liegende Winkel

In welchen Fällen handelt es sich um....

Stufenwinkel
Wechselwinkel
entgegengesetzt liegende Winkel?

Die Umkehrung des Stufenwinkelsatzes

Satz X.1: (Umkehrung des Stufenwinkelsatzes)
Es seien \ a und \ b zwei nicht identische Geraden, die durch eine dritte Gerade \ c jeweils geschnitten werden. Es seien ferner \ \alpha und \ \beta zwei Stufenwinkel, die bei dem Schnitt von \ c mit \ a und \ b entstehen mögen.
Wenn die beiden Stufenwinkel \ \alpha und \ \beta kongruent zueinander sind, dann sind die Geraden \ a und \ b parallel zueinander.
Beweis von Satz X.1: (Umkehrung des Stufenwinkelsatzes)

Es seien \ a, b und \ c drei paarweise nicht identische Geraden. Die Gerade \ c möge \ a in dem Punkt \ A und die Gerade \ b in dem Punkt \ B schneiden. \ \alpha und \ \beta sei ein Paar von Stufenwinkeln, welches bei dem Schnitt von \ a und \ b mit \ c entstehen möge.

Voraussetzung:

(i) \ \alpha \tilde {=}\beta

Umkehrung stufenwinkelsatz 01.png

Behauptung:

\ a \parallel b

Annahme:

a\not\parallel b

Den Rest können Sie selbst!