Umkehrung des Stufenwinkelsatzes (WS 12 13): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
*m.g.* (Diskussion | Beiträge) (→Beweis von Satz X.1: (Umkehrung des Stufenwinkelsatzes)) |
*m.g.* (Diskussion | Beiträge) (→Beweisführung Caro44) |
||
| Zeile 35: | Zeile 35: | ||
[[Datei:Caro44_Umkehrung_Stufenwinkelsatz.JPG]]<br />--[[Benutzer:Caro44|Caro44]] 14:57, 24. Jan. 2013 (CET) | [[Datei:Caro44_Umkehrung_Stufenwinkelsatz.JPG]]<br />--[[Benutzer:Caro44|Caro44]] 14:57, 24. Jan. 2013 (CET) | ||
| + | ===Bemerkung --[[Benutzer:*m.g.*|*m.g.*]] 17:34, 24. Jan. 2013 (CET)=== | ||
| + | sehr gut! | ||
| + | Nur für ganz Pingelige: so wie (7) formuliert wurde handelt es sich nicht explizit um eine Gleichung. Hinter (7) verbirgt sich jedoch eine Gleichung: | ||
Version vom 24. Januar 2013, 17:34 Uhr
|
Stufenwinkel, Wechselwinkel, entgegengesetzt liegende WinkelZeichnen Sie Bespiele und Gegenbeispiele zu den in der Überschrift genannten Begriffen und laden Sie Ihre Zeichnungen hier mit entsprechenden Kommentaren hoch. Die Umkehrung des StufenwinkelsatzesSatz X.1: (Umkehrung des Stufenwinkelsatzes)
Beweis von Satz X.1: (Umkehrung des Stufenwinkelsatzes)Es seien Voraussetzung: (i) Behauptung:
Annahme:
Den Rest können Sie selbst! Beweisführung Caro44
Bemerkung --*m.g.* 17:34, 24. Jan. 2013 (CET)sehr gut! Nur für ganz Pingelige: so wie (7) formuliert wurde handelt es sich nicht explizit um eine Gleichung. Hinter (7) verbirgt sich jedoch eine Gleichung:
|
und
zwei nicht identische Geraden, die durch eine dritte Gerade
jeweils geschnitten werden. Es seien ferner
und
zwei Stufenwinkel, die bei dem Schnitt von
und
und die Gerade
schneiden.

