Lösung von Aufgabe 12.06 WS 12 13: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
*m.g.* (Diskussion | Beiträge) (→Bemerkungen --*m.g.* 09:48, 31. Jan. 2013 (CET)) |
*m.g.* (Diskussion | Beiträge) (→Bemerkungen --*m.g.* 09:48, 31. Jan. 2013 (CET)) |
||
Zeile 29: | Zeile 29: | ||
Alles in allem aber eine schöne Lösung. | Alles in allem aber eine schöne Lösung. | ||
− | Die Konstellation hier noch mal zum dynamischen Verändern: | + | Die Konstellation hier noch mal zum dynamischen Verändern: (A, B, C können verschoben werden) |
<ggb_applet width="523" height="339" version="4.2" ggbBase64="UEsDBBQACAgIAMFUP0IAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAMFUP0IAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vvbctu2Fn1OvwLDZ4siQIKXjJSOr9N03DZT55w5c95AEpJYUyRLUpbcyef0B3q/vp33fNPZAEiJ1CUKZdfjZGxHBkHittfaWHuDdgafLqYxuuF5EaXJUMO6oSGeBGkYJeOhNitHPVf79MUngzFPx9zPGRql+ZSVQ83SibbqBzUdu6JzFA41QqjvuTTo2a7Fe5brOD3PdEc9YjPXCy2T2P5IQ2hRRM+T9Es25UXGAn4VTPiUXaYBK+WYk7LMnvf78/lcr2fX03zcH499fVGEGoKVJ8VQqy6ew3CtTnNTNieGgfv/+eJSDd+LkqJkScA1JKyaRS8+eTaYR0mYztE8CsvJUKMUzJjwaDwRZjq2hvqiUQa2ZjwooxteQNdGVdpcTjNNNmOJeP5MXaF4aY6GwugmCnk+1AzdtNvfVENpHvGkrBrjatJ+PdzgJuJzNa64klNahucAB1ER+TEfaiMWF2BWlIxygBRWlM+gWpS3MfdZXtdXC8JH8A0Nou+4GAuMVjgAf55xRLBz5BjGkUSjvzaxhso0jeWoBqIeevMGEYMY6EgUWBUECttWjwx1zzBVQVRhqYKqNpbqbqmmlmpjqTaW+Q47q/rK0OpGy9LaTrNpJwb7xMeGjwRgzU63YScWRrxBWKxeFiYS68Zy/aKwqqqtqo4ssKEKXD10xQ+Jl31Hi8yDLMKNWZU/7J50w1/qGSkx339Gcic7l1aSbVYSusPKO4JbT4ppY1KYS/6Tn40pzU527oS2w4y2dZe9f8CEjvEQEw76tdINqr2HioloW7lryaeFUB3Tk8KDMKKwMW0HdIIi7EHhiA1KEKbIolDFLrJF6SBT7EkLmchFoh02kZQX6sIPS+5XG1EYS9x01MZFpoWoibAUJQuBFCEpbCByxIQWlCIKncTsWExr2siyoWK6yIIFCklzhGyY0A/qMDlBJkam6IsdRGxkE+QIWcSWUEvbFWuHQQmyDWSLrqCLoIlKD6GHi0xhDXh4lhbREtwJj7MlKxLHKMlmZQu7YBrWl2W61jpMg+uTNaw5K8r6GhpBMFrFPBWcWiHx2SBmPo8hcbgSboDQDYvFDpbjj9KkRLULEHVvnLNsEgXFFS9L6FWgb9gNu2QlX1xA66JeoJxaRuoBnwVxFEYs+Tf4iBhCDIiWgVvoUh24TYzVLEGa5uHVbQGOgxb/5Xk61HqQqTS/CITfW/UI2+1HVChQwITLW57uNb8gOtxWj6ixNqCamt8sTWMLvjQIjXOxnxqVl8VJGq9uZWmUlKcsK2e5TMNgDbmw6jgZx1yCK3UVEprg2k8XVwpVU431+jaDmqFW4I9P0zjNEexIQsHKcVX6qpRtxNKWrQzZxpAtjJqmKFw+xx6RLWTpq1K2At7V0ipTcW0mNuppokLqCAyuvKwWXuE1Ij+aJVF5WVfKKLiuTMWqw5ezqQ8OV3lke0x8X2MO+ms+NrjmecJj5UkJkDlLZ4Vy7aV7PhvMCv6KlZPjJPyaj2FPvmJCFksYWjVdLTnkQTSFjup+BR4TxP4Llqruhnyc89rEWGa+Clr51Gj69cZtOdRFnk5fJjevwWvWljro1/YMiiCPMuGdyAedvuYr/wujgoHKh81+YHwBVgRCcQDIUoCoITYrJ2kuk1vYt2LXoc//932S8BykEjxS7NmYTyGxRaX0S+naS36OZcosiECp/w0oyTJwqOcr2ODxVh+V3szibMJEWl1hELNbWEATFTneF2m4jhVQIQ0CdciUU2ScK39S64WLDIaT27DBtwS/QAtYgC52wi2IiqkTkITv1CFKHRmEsWJ3tqRQ3V0jDvxO4bQHsZMPHzFb96waMdP+xxE7/fARo3C2VohhnVj3gliQTqcsCVEis7dXaXw7ThNtlTcwQ+xOxLBwOcSIwFGBNCvr5yCQMUQgrJoFqhmDwhxqvpqwmmYLRWrCmoTlUO1QUkJ6cA0H4ELGu7KKbPLisygMucx9+u/mt4Fok2AsIjsATnEV61YM4y4M73bDgo9FbbmQYI8jdl9oR1dcORR0dVsJi+FI/7J0OMW30h/lbCBylGzmN4cQBf4TC1d/mYjoyGU82Yyn15xnIpH5Knmds6QQL53agfT9YWePB/Ye0TGpN7JjrxMASLu643l4lWM6HxDQ/uMBmuhGFWKITlSI6WERbTzazN8fE7ZtQb6ERa2p8Wkts+syHL5baoV9Sw7CwzhqnwoeXoAsnTrA6MF88W8T1aVQ2X80zeIoiMrOJJwoEvwNEngHEvgjIWHbLiEgTBTfjwLdG+pVIsI2UB91QH30SFDfHwQM3cJOU6ge3POXurZGxEgREW4QcbYv3Wtm5GcHZeS2K5kQha+Ku3Ph6Q4hNqUrZ5e8VLftKiSbLrbvMdneBS5X4I42wD3vAu75owHX9HRCqOvWQo8VuBYFsTFsqwHuRmL5EDhvOvFFF5wvHg3OjqNjbDi1psDJ0DYdTFaQ/iNeLN9Fbo+Op+okeLEB8Nsf3o2wfHe1RBBai/6wmFm9JN2lroFdD5uWZXrUogce/nad7vF7s1CfEbtIcv2yLw8a4NevCeI4nX/NRzFfSGTfN1HcRsNp69x+vEnDj51o+HEvDfYTDVtoOGvthi00/NSJhp82aXAoJAqOiym1sYfrBLkzDYQoIohiwjY+MiIqWTre9R7r7c+diPj5iYgDiajy+LOdRPzSiYhf9gqT+yRMu+PDhaLhZJOGXzvR8Ove/XBomP7Y98PFnhfsb3/rRMRv60RgnRIP9oFHLOqaHjl0O6z/6hiLpPKjYqIKEec7Y/XvnZj4fS8TT1TsCRKnO9Xpj05U/LGXikN/g/TxU3HaSpzONqn4sxMVfz7p06FMnLeY2LIp/urExF9PJ+u7aFMVsM83afi7Ew1/78mcDM978Mzpq9Go4KV8f0erv9JwHxlP/ebfIsk/Dqz+e8CL/wNQSwcIPT6HK5MIAADOMAAAUEsBAhQAFAAICAgAwVQ/QtY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICADBVD9CPT6HK5MIAADOMAAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAACoJAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> | <ggb_applet width="523" height="339" version="4.2" ggbBase64="UEsDBBQACAgIAMFUP0IAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAMFUP0IAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vvbctu2Fn1OvwLDZ4siQIKXjJSOr9N03DZT55w5c95AEpJYUyRLUpbcyef0B3q/vp33fNPZAEiJ1CUKZdfjZGxHBkHittfaWHuDdgafLqYxuuF5EaXJUMO6oSGeBGkYJeOhNitHPVf79MUngzFPx9zPGRql+ZSVQ83SibbqBzUdu6JzFA41QqjvuTTo2a7Fe5brOD3PdEc9YjPXCy2T2P5IQ2hRRM+T9Es25UXGAn4VTPiUXaYBK+WYk7LMnvf78/lcr2fX03zcH499fVGEGoKVJ8VQqy6ew3CtTnNTNieGgfv/+eJSDd+LkqJkScA1JKyaRS8+eTaYR0mYztE8CsvJUKMUzJjwaDwRZjq2hvqiUQa2ZjwooxteQNdGVdpcTjNNNmOJeP5MXaF4aY6GwugmCnk+1AzdtNvfVENpHvGkrBrjatJ+PdzgJuJzNa64klNahucAB1ER+TEfaiMWF2BWlIxygBRWlM+gWpS3MfdZXtdXC8JH8A0Nou+4GAuMVjgAf55xRLBz5BjGkUSjvzaxhso0jeWoBqIeevMGEYMY6EgUWBUECttWjwx1zzBVQVRhqYKqNpbqbqmmlmpjqTaW+Q47q/rK0OpGy9LaTrNpJwb7xMeGjwRgzU63YScWRrxBWKxeFiYS68Zy/aKwqqqtqo4ssKEKXD10xQ+Jl31Hi8yDLMKNWZU/7J50w1/qGSkx339Gcic7l1aSbVYSusPKO4JbT4ppY1KYS/6Tn40pzU527oS2w4y2dZe9f8CEjvEQEw76tdINqr2HioloW7lryaeFUB3Tk8KDMKKwMW0HdIIi7EHhiA1KEKbIolDFLrJF6SBT7EkLmchFoh02kZQX6sIPS+5XG1EYS9x01MZFpoWoibAUJQuBFCEpbCByxIQWlCIKncTsWExr2siyoWK6yIIFCklzhGyY0A/qMDlBJkam6IsdRGxkE+QIWcSWUEvbFWuHQQmyDWSLrqCLoIlKD6GHi0xhDXh4lhbREtwJj7MlKxLHKMlmZQu7YBrWl2W61jpMg+uTNaw5K8r6GhpBMFrFPBWcWiHx2SBmPo8hcbgSboDQDYvFDpbjj9KkRLULEHVvnLNsEgXFFS9L6FWgb9gNu2QlX1xA66JeoJxaRuoBnwVxFEYs+Tf4iBhCDIiWgVvoUh24TYzVLEGa5uHVbQGOgxb/5Xk61HqQqTS/CITfW/UI2+1HVChQwITLW57uNb8gOtxWj6ixNqCamt8sTWMLvjQIjXOxnxqVl8VJGq9uZWmUlKcsK2e5TMNgDbmw6jgZx1yCK3UVEprg2k8XVwpVU431+jaDmqFW4I9P0zjNEexIQsHKcVX6qpRtxNKWrQzZxpAtjJqmKFw+xx6RLWTpq1K2At7V0ipTcW0mNuppokLqCAyuvKwWXuE1Ij+aJVF5WVfKKLiuTMWqw5ezqQ8OV3lke0x8X2MO+ms+NrjmecJj5UkJkDlLZ4Vy7aV7PhvMCv6KlZPjJPyaj2FPvmJCFksYWjVdLTnkQTSFjup+BR4TxP4Llqruhnyc89rEWGa+Clr51Gj69cZtOdRFnk5fJjevwWvWljro1/YMiiCPMuGdyAedvuYr/wujgoHKh81+YHwBVgRCcQDIUoCoITYrJ2kuk1vYt2LXoc//932S8BykEjxS7NmYTyGxRaX0S+naS36OZcosiECp/w0oyTJwqOcr2ODxVh+V3szibMJEWl1hELNbWEATFTneF2m4jhVQIQ0CdciUU2ScK39S64WLDIaT27DBtwS/QAtYgC52wi2IiqkTkITv1CFKHRmEsWJ3tqRQ3V0jDvxO4bQHsZMPHzFb96waMdP+xxE7/fARo3C2VohhnVj3gliQTqcsCVEis7dXaXw7ThNtlTcwQ+xOxLBwOcSIwFGBNCvr5yCQMUQgrJoFqhmDwhxqvpqwmmYLRWrCmoTlUO1QUkJ6cA0H4ELGu7KKbPLisygMucx9+u/mt4Fok2AsIjsATnEV61YM4y4M73bDgo9FbbmQYI8jdl9oR1dcORR0dVsJi+FI/7J0OMW30h/lbCBylGzmN4cQBf4TC1d/mYjoyGU82Yyn15xnIpH5Knmds6QQL53agfT9YWePB/Ye0TGpN7JjrxMASLu643l4lWM6HxDQ/uMBmuhGFWKITlSI6WERbTzazN8fE7ZtQb6ERa2p8Wkts+syHL5baoV9Sw7CwzhqnwoeXoAsnTrA6MF88W8T1aVQ2X80zeIoiMrOJJwoEvwNEngHEvgjIWHbLiEgTBTfjwLdG+pVIsI2UB91QH30SFDfHwQM3cJOU6ge3POXurZGxEgREW4QcbYv3Wtm5GcHZeS2K5kQha+Ku3Ph6Q4hNqUrZ5e8VLftKiSbLrbvMdneBS5X4I42wD3vAu75owHX9HRCqOvWQo8VuBYFsTFsqwHuRmL5EDhvOvFFF5wvHg3OjqNjbDi1psDJ0DYdTFaQ/iNeLN9Fbo+Op+okeLEB8Nsf3o2wfHe1RBBai/6wmFm9JN2lroFdD5uWZXrUogce/nad7vF7s1CfEbtIcv2yLw8a4NevCeI4nX/NRzFfSGTfN1HcRsNp69x+vEnDj51o+HEvDfYTDVtoOGvthi00/NSJhp82aXAoJAqOiym1sYfrBLkzDYQoIohiwjY+MiIqWTre9R7r7c+diPj5iYgDiajy+LOdRPzSiYhf9gqT+yRMu+PDhaLhZJOGXzvR8Ove/XBomP7Y98PFnhfsb3/rRMRv60RgnRIP9oFHLOqaHjl0O6z/6hiLpPKjYqIKEec7Y/XvnZj4fS8TT1TsCRKnO9Xpj05U/LGXikN/g/TxU3HaSpzONqn4sxMVfz7p06FMnLeY2LIp/urExF9PJ+u7aFMVsM83afi7Ew1/78mcDM978Mzpq9Go4KV8f0erv9JwHxlP/ebfIsk/Dqz+e8CL/wNQSwcIPT6HK5MIAADOMAAAUEsBAhQAFAAICAgAwVQ/QtY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICADBVD9CPT6HK5MIAADOMAAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAACoJAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> |
Version vom 31. Januar 2013, 10:39 Uhr
Aufgabe 12.06Beweisen Sie: Die Höhen eines Dreiecks (bzw. die Geraden, die durch die Höhen eindeutig bestimmt sind) schneiden einander in genau einem Punkt.
Lösung User Caro44--Caro44 13:53, 30. Jan. 2013 (CET) Lösung User B.....
Bemerkungen --*m.g.* 09:48, 31. Jan. 2013 (CET)
Alles in allem aber eine schöne Lösung. Die Konstellation hier noch mal zum dynamischen Verändern: (A, B, C können verschoben werden)
|