Lösung von Aufgabe 4.3 P (WS 12 13): Unterschied zwischen den Versionen
Würmli (Diskussion | Beiträge) |
|||
Zeile 9: | Zeile 9: | ||
Wenn eine Gerade senkrecht auf einer Strecke steht und diese in zwei gleich große Strecken teilt, dann ist diese Gerade die Mittelsenkrechte dieser Strecke.--[[Benutzer:Der Bohrer|Der Bohrer]] 12:24, 30. Nov. 2012 (CET) | Wenn eine Gerade senkrecht auf einer Strecke steht und diese in zwei gleich große Strecken teilt, dann ist diese Gerade die Mittelsenkrechte dieser Strecke.--[[Benutzer:Der Bohrer|Der Bohrer]] 12:24, 30. Nov. 2012 (CET) | ||
+ | |||
+ | Wenn jeder Punkt einer Geraden den gleichen Abstand zu den Endpunkten A und B einer Strecke hat, dann heißt die Gerade Mittelsenkrechte zur Strecke <math>\overline{AB}</math> . --Würmli 17:00, 3. Feb. 2013 (CET) | ||
[[Category:Einführung_P]] | [[Category:Einführung_P]] |
Version vom 3. Februar 2013, 17:00 Uhr
Geben Sie zwei prinzipiell verschiedene Konventionaldefinitionen des Begriffs Mittelsenkrechte einer Strecke an.
Wenn eine Gerade eine Strecke in der Mitte mit einem rechten Winkel schneidet, dann ist diese Gerade die Mittelsenkrechte der Strecke.--Unicycle 20:10, 25. Nov. 2012 (CET)
Ich denke, dass die Definition richtig ist. Du könntest aber auch sagen...die senkrecht auf... Steht --Hakunamatata 14:57, 26. Nov. 2012 (CET)
Die Formulierung ist nicht so geschickt. Besser wäre, eine Gerade die die STrecke so schneidet, dass bei ihrem Schnitt ein rechter Winkel entsteht ODER noch besser, wie Hakunamatata schreibt: Eine Gerade die senkrecht zur Strecke steht.
Die Formulierung "in der Mitte der Strecke" ist auch informell. Was soll Mitte sein?--Tutorin Anne 19:18, 27. Nov. 2012 (CET)
Wenn eine Gerade senkrecht auf einer Strecke steht und diese in zwei gleich große Strecken teilt, dann ist diese Gerade die Mittelsenkrechte dieser Strecke.--Der Bohrer 12:24, 30. Nov. 2012 (CET)
Wenn jeder Punkt einer Geraden den gleichen Abstand zu den Endpunkten A und B einer Strecke hat, dann heißt die Gerade Mittelsenkrechte zur Strecke . --Würmli 17:00, 3. Feb. 2013 (CET)