Pfeilklassen: Unterschied zwischen den Versionen
(→Satz) |
(→Pfeilklassen) |
||
Zeile 5: | Zeile 5: | ||
− | {{Definition| | + | {{Definition|Zwei Pfeile <math>\vec{AB}</math> und <math>\vec{CD}</math> heißen '''parallelgleich''', wenn gilt: <br /> |
# <math>|AB|=|CD|</math> | # <math>|AB|=|CD|</math> |
Version vom 23. Mai 2013, 14:06 Uhr
Pfeilklassen
Definition
Pfeil
Es seien und
zwei (nicht notwendigerweise) verschiedene Punkte. Der Pfeil
ist das geordnete Paar
.
heißt Anfangspunkt des Pfeils
,
heißt Endpunkt des Pfeils
. Jedem Pfeil ist eine Punktmenge zugehörig, Es handelt sich dabei um die Menge der Punkte der Strecke
. Sollte der Anfangspunkt eines Pfeils mit dem Endpunkt dieses Pfeils zusammenfallen spricht man vom Nullpfeil
. Zwei Pfeile
und
haben einen Punkt gemeinsam falls ihre Punktmengen einen Punkt gemeinsam haben.
Definition
Zwei Pfeile und
heißen parallelgleich, wenn gilt:
-
-
-
und
sind gleichorientiert.
Satz
Die Relation parallelgleich ist eine Äquivalenzrelation auf der Menge der Pfeile des Raumes bzw. der Ebene.
D.h. ist parallelgleich(
) zu
, wenb gilt:
a) Reflexivität:
b) Symmetrie:
c) Transitivität:
Definition
Eine Pfeilklasse ist eine Äquivalenzklasse bzgl der Äquivalenzrelation parallelgleich,
d.h, mit der Pfeilklasse bezeichnet man die Menge aller zu dem Pfeil
parallelgleicen Pfeile der Ebene bzw. des Raumes:
Rechenregeln der Addition von Pfeilklassen
Für beliebige Pfeilklassen gilt:
i) gilt
(Kommuntativität der Addition)
ii) gilt
(Assoziativität der Addition)
iii) Es existiert eine Pfeilklasse , sodass gilt
(neutrales Element bzgl. der Addition, Nullpfeilklasse)
iv) Zu jedem existiert ein
mit
(inverses Element)