Pfeilklassen: Unterschied zwischen den Versionen
(→Pfeilklassen) |
(→Satz) |
||
Zeile 12: | Zeile 12: | ||
− | ===Satz=== | + | ====Satz==== |
Die Relation parallelgleich ist eine Äquivalenzrelation auf der Menge der Pfeile des Raumes bzw. der Ebene.<br /><br /> | Die Relation parallelgleich ist eine Äquivalenzrelation auf der Menge der Pfeile des Raumes bzw. der Ebene.<br /><br /> | ||
D.h. <math> \vec{a}</math> ist parallelgleich(<math>\sim</math>) zu <math>\vec{b}</math>, wenb gilt: <br /> | D.h. <math> \vec{a}</math> ist parallelgleich(<math>\sim</math>) zu <math>\vec{b}</math>, wenb gilt: <br /> |
Version vom 23. Mai 2013, 14:07 Uhr
Pfeilklassen
Definition
Pfeil
Es seien und zwei (nicht notwendigerweise) verschiedene Punkte. Der Pfeil ist das geordnete Paar . heißt Anfangspunkt des Pfeils , heißt Endpunkt des Pfeils . Jedem Pfeil ist eine Punktmenge zugehörig, Es handelt sich dabei um die Menge der Punkte der Strecke . Sollte der Anfangspunkt eines Pfeils mit dem Endpunkt dieses Pfeils zusammenfallen spricht man vom Nullpfeil . Zwei Pfeile und haben einen Punkt gemeinsam falls ihre Punktmengen einen Punkt gemeinsam haben.
Definition
Zwei Pfeile und heißen parallelgleich, wenn gilt:
- und sind gleichorientiert.
Satz
Die Relation parallelgleich ist eine Äquivalenzrelation auf der Menge der Pfeile des Raumes bzw. der Ebene.
D.h. ist parallelgleich() zu , wenb gilt:
a) Reflexivität:
b) Symmetrie:
c) Transitivität:
Definition
Eine Pfeilklasse ist eine Äquivalenzklasse bzgl der Äquivalenzrelation parallelgleich,
d.h, mit der Pfeilklasse bezeichnet man die Menge aller zu dem Pfeil parallelgleicen Pfeile der Ebene bzw. des Raumes:
Rechenregeln der Addition von Pfeilklassen
Für beliebige Pfeilklassen gilt:
i) gilt (Kommuntativität der Addition)
ii) gilt (Assoziativität der Addition)
iii) Es existiert eine Pfeilklasse , sodass gilt (neutrales Element bzgl. der Addition, Nullpfeilklasse)
iv) Zu jedem existiert ein mit (inverses Element)