Lösung von Zusatzaufgabe 6.2P (WS 13/14): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
Zeile 17: | Zeile 17: | ||
<br> | <br> | ||
--[[Benutzer:EarlHickey|EarlHickey]] ([[Benutzer Diskussion:EarlHickey|Diskussion]]) 13:19, 4. Feb. 2014 (CET) | --[[Benutzer:EarlHickey|EarlHickey]] ([[Benutzer Diskussion:EarlHickey|Diskussion]]) 13:19, 4. Feb. 2014 (CET) | ||
+ | <br /> | ||
+ | <br /> | ||
+ | <span style ="Color:red"> So einfach ist der Beweis leider nicht. Du hast zwar richtig begründet, dass eine Zwischenrelation gilt, jedoch nicht dass genau eine - also nicht zwei auf einmal gelten. < \span> --[[Benutzer:Tutorin Anne|Tutorin Anne]] ([[Benutzer Diskussion:Tutorin Anne|Diskussion]]) 10:16, 5. Feb. 2014 (CET) <br /> | ||
Aktuelle Version vom 5. Februar 2014, 10:16 Uhr
Beweisen Sie: Es sei mit
sind paarweise verschieden.
Dann gilt genau eine der folgenden Zwischenrelationen: oder
oder
.
Aus der Dreiecksungleichung
- "Für drei beliebige Punkte
und
gilt:
- "Für drei beliebige Punkte
- Falls
, dann ist eine der folgenden Gleichungen erfüllt:
- Falls
- Ist umgekehrt eine dieser drei Gleichungen erfüllt, so sind
,
und
kollinear."
folgt unmittelbar unter Verwendung von der Definition I.2: (Zwischenrelation)
- "Ein Punkt
liegt zwischen zwei Punkten
und
, wenn
gilt und der Punkt
sowohl von
als auch von
verschieden ist.
- "Ein Punkt
- Schreibweise:
"
- Schreibweise:
die Behauptung.
--EarlHickey (Diskussion) 13:19, 4. Feb. 2014 (CET)
So einfach ist der Beweis leider nicht. Du hast zwar richtig begründet, dass eine Zwischenrelation gilt, jedoch nicht dass genau eine - also nicht zwei auf einmal gelten. < \span> --Tutorin Anne (Diskussion) 10:16, 5. Feb. 2014 (CET)