Lösung von Aufgabe 1.4 (SoSe 14): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
Zeile 15: | Zeile 15: | ||
4.Da ist das gleiche, wie bei der 2, oder? Da kommt ein Rechteck raus. Ein Rechteck ist aber auch ein Parallelogramm. --[[Benutzer:Picksel|Picksel]] ([[Benutzer Diskussion:Picksel|Diskussion]]) 11:58, 30. Apr. 2014 (CEST) | 4.Da ist das gleiche, wie bei der 2, oder? Da kommt ein Rechteck raus. Ein Rechteck ist aber auch ein Parallelogramm. --[[Benutzer:Picksel|Picksel]] ([[Benutzer Diskussion:Picksel|Diskussion]]) 11:58, 30. Apr. 2014 (CEST) | ||
+ | |||
+ | |||
+ | |||
+ | 1. korrekte Definition | ||
+ | |||
+ | 2. Ein Drachen, dessen gegenüberliegende Seiten kongruent zueinander sind, müsste eine Raute sein. | ||
+ | |||
+ | Bei 3. und 4. bin ich mir nicht so richtig sicher.--[[Benutzer:Früchtchen:)|Früchtchen:)]] ([[Benutzer Diskussion:Früchtchen:)|Diskussion]]) 09:43, 2. Mai 2014 (CEST) |
Version vom 2. Mai 2014, 08:43 Uhr
In welchen Fällen handelt es sich um eine korrekte Definition des Begriffs Parallelogramm? Begründen Sie!
- Wenn sich in einem Viereck die Diagonalen halbieren, so ist das Viereck ein Parallelogramm.
- Wenn in einem Drachen die gegenüberliegenden Seiten kongruent zueinander sind, so ist der Drachen ein Parallelogramm.
- Es gibt Trapeze, die ein weiteres Paar paralleler Seiten haben und die Parallelogramme genannt werden.
- Trapeze mit zwei zueinander kongruenten Seiten heißen Parallelogramme.
1. Eine konventional-formale Definition.
2.Da bin mir nicht sicher. Nach der Definition könnte eine Raute gemeint sein. Aber eine Raute ist auch ein Parallelogramm.
3.Das ist keine Definition, sondern eine Aussage, die man nicht beweisen kann.
4.Da ist das gleiche, wie bei der 2, oder? Da kommt ein Rechteck raus. Ein Rechteck ist aber auch ein Parallelogramm. --Picksel (Diskussion) 11:58, 30. Apr. 2014 (CEST)
1. korrekte Definition
2. Ein Drachen, dessen gegenüberliegende Seiten kongruent zueinander sind, müsste eine Raute sein.
Bei 3. und 4. bin ich mir nicht so richtig sicher.--Früchtchen:) (Diskussion) 09:43, 2. Mai 2014 (CEST)