Benutzer:Tutorin Anne: Unterschied zwischen den Versionen
(→Newsticker) |
(→Mandala ganz einfach selbst gemacht!) |
||
Zeile 1: | Zeile 1: | ||
+ | = Sommersemester 2014 = | ||
+ | Weil ich mein Staatsexamen schon hinter mir habe, grüße ich euch dieses Semester aus Kamerun. Wasser, Strom und Internet fallen hier regelmäßig aus, so dass es passieren könnte, dass ich mal ein paar Tage nicht auf die Wikiseite komme. | ||
+ | --[[Benutzer:Tutorin Anne|Tutorin Anne]] ([[Benutzer Diskussion:Tutorin Anne|Diskussion]]) 23:50, 5. Mai 2014 (CEST) | ||
= Mandala ganz einfach selbst gemacht!= | = Mandala ganz einfach selbst gemacht!= | ||
Version vom 5. Mai 2014, 22:50 Uhr
Sommersemester 2014
Weil ich mein Staatsexamen schon hinter mir habe, grüße ich euch dieses Semester aus Kamerun. Wasser, Strom und Internet fallen hier regelmäßig aus, so dass es passieren könnte, dass ich mal ein paar Tage nicht auf die Wikiseite komme. --Tutorin Anne (Diskussion) 23:50, 5. Mai 2014 (CEST)
Mandala ganz einfach selbst gemacht!
Wo sich überall Mathematik verbirgt?!
Die Idee kam so
Anleitung: Mein erster Beitrag im Wiki
Nach dem ihr euch mit einem Fantasienamen angemeldet habt, könnt ihr Beiträge einfügen. Dabei kann man zunächst etwas Reinschreiben und das geht so:
Die meisten Symbole sind ja selbsterklärend. Die Wichtigsten sind:
Nicht vergessen! Vor dem Speichern selbst das Layout mittels "Vorschau" überprüfen. Oft fehlen z.B. Zeilenumbrüche.
Am Rand findet ihr zur Orientierung die wichtigsten Dinge:
--Tutorin Anne 18:13, 16. Apr. 2013 (CEST)
Tabelle als Vorlage
Voraussetzung | (V. hier eintragen) |
Behauptung | (Beh. hier eintragen) |
Nr. | Beweisschritt | Begründung |
---|---|---|
1 | (Schritt 1 hier) | (Begründung 1) |
2 | (Schritt 2) | (Begründung 2) |
3 | (Schritt) | (Begründung) |
4 | (Schritt) | (Begründung) |
Voraussetzung | ... |
Behauptung | .... |
Annahme | ... |
Nr. | Beweisschritt | Begründung |
---|---|---|
1 | ...) | ... |
2 | ... | ... |
3 | ... | ... |
4 | ... | ... |
... | ... | ... |
... | ... | ... |
Beweis: Parallelentreue der Geradenspiegelung Z9.1 SS2013
Voraussetzung | a II b, und |
Behauptung | a' II b' |
Annahme | a' |
Nr. | Beweisschritt | Begründung |
---|---|---|
1 | = {S'} | ... |
2 | ... | |
3 | und | ... |
4 | = {S} | ... |
5 | a' II b' | ... |
6 | Widerspruch zur Voraussetzung | ... |
WS12/13 Beweis zum Rechteck
Satz: Ein Rechteck hat 2 Symmetrieachsen.
Voraussetzung | Rechteck |
Behauptung | hat zwei Symmetrieachsen |
Vorüberlegung: Es muss gezeicht werden, dass das Rechteck bei der Spiegelung an und jeweils wieder auf sich abgebildet wird.
Beweisführung
Nr. | Beweisschritt | Begründung |
---|---|---|
1 | m ist Mittelsenkrechte von und n ist Mittelsenkrechte von | Vor.; Def. Mittelsenkrechten |
2 | 1.; Mittelsenkrechtenkriterium | |
3 | 2.; Eigenschaften Geradenspiegelung (abstandserhaltend) | |
4 | Vor. | |
5 | 4. Eigenschaften Geradenspiegelung (Winkeltreue) | |
6 | 5. Vor. | |
7 | 6. Eigenschaften Geradenspiegelung (abstandserhaltend) - müsste nicht Sm(D) = C sein? | |
8 | 3.7. Eigenschaften Geradenspiegelung | |
9 | m ist Symmetrieachse | 8. |
10 | n ist Symmetrieachse | analog Schritt 2-9 bezogen auf n |
Das ist jetzt mal so meine Idee, ich denke so könnte man es machen (mit richtiger Begründung!) - aber auch anders. Jetzt bitte Begründungen einfügen!!! --Tutorin Anne 18:58, 6. Feb. 2013 (CET)
SS12, Übung 10.3 Umkehrung des Basiswinkelsatzes, direkter Beweis
Voraussetzung | Dreieck mit üblicher Bezeichnung, |
Behauptung |
Beweisschritt | Begründung |
---|---|
1) m ist Mittelsenkrechte von | (Begründung 1) |
2) | (Begründung 2) |
3) FAll 1) | (Begründung) |
4) | (Begründung) |
5) | (Begründung) |
6) | (Begründung) |
7) | (Begründung) |
8) | (Begründung) |
9) Fall 2) analog Fall 1 | - |
10) Fall 3) | (Begründung) |
Funktionen (Elementare Funktionen SS 11)
Quadratische Funktion und ihr Graph, eine Parabel
Tutorium SS11
Tutorium 13, Aufgabe 1
Voraussetzung | sei ein beliebiger Winkel |
Behauptung | 1. Existenz einer Winkelhalbierenden 2. Eindeutigkeit dieser Wh |
Beweis zu 1.
z.z. Es exisitert ein Strahl , für den gilt und .
1) | ist eine reele Zahl zwischen 0 und 180 | ... |
2) | ... | ... |
3) | ... | ... |
4) | ... | ... |
5) | ... | ... |
Tutorium 3, Aufgabe 2