Der schwache Außenwinkelsatz: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
*m.g.* (Diskussion | Beiträge) (→schwacher Außenwinkelsatz?) |
*m.g.* (Diskussion | Beiträge) (→schwacher Außenwinkelsatz?) |
||
Zeile 1: | Zeile 1: | ||
== ''schwacher'' Außenwinkelsatz? == | == ''schwacher'' Außenwinkelsatz? == | ||
− | + | In der Vorlesung wurde angedeutet, dass es im Rahmen der absoluten Geometrie nicht möglich ist, den Satz über die Summe der größen der Innenwinkel eines Dreiecks zu beweisen. | |
<ggb_applet width="755" height="502" version="3.2" ggbBase64="UEsDBBQACAAIAGtG5DwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VrLcts2FF03X4HhIpuMaYJvTaRkFHuTmbTOxG6m0+kGIiEJNUUqBGhLnvxLvyGPP+je39QLgKRISn5ItlMnrRamCYDAxTnnPkCp/3IxS9AZzTnL0oGBTctANI2ymKWTgVGI8V5ovHzxpD+h2YSOcoLGWT4jYmA4pm3I9oK9ePJTn0+zc0QSNeQ9o+cDY0wSTg3E5zklMZ9SKlrtpFiwhJF8eTT6k0aCrzr0JK/TeQGriLyAtmgWv2G8ut1XC84TJg7ZGYtpjpIsGhi+B6bDf+9pLlhEkoHhWrrFHhh2pxOaHNk7zXJ2kaVCDl9NPoYWhDi7oPCkJdv6+2qjfVpECYsZSeVmlB0wCKFzFovpwAg8D6akbDIFWz3L0rNFWZbHx0su6Awtfqd5BjBblgR6Wd711B0Hu6h8TnU179Q09OyYCgG0cEQWdAXYJGdx6+Y1f5Ulq6Z5xlJxQOaiyBWnTtl0LJZyAVgrlwYP00lCyzYbIJ/S6HSULY4VCNjRU58s5+oRZdBocpAlWY5yCS9sfFJeR/qqxkhL61GWGmOpEeUcctK6H/dsNUJdR/qqRiUs1aaVO8fVrrFVLcM4kg0SRpBivfmEjChQa6AiZeJNdQMSOC23ivUDvxSzEfhAUwT1nPi+5uzvd+TTP6V5ShMtkhS4LbKCozMpRr2WMiSmEZvBre7ApXWSrl/BAN0a00lOK8O1B2nAVG9LiJ3m/n5lhLSBg62RgFAA+xFyL4fgXlyQ/JSiYfH3XzQ9Z+kpTTgRF9KJBTjQwJiZE9NAMRHwgAwKNKEzCi4klFyU2mrYhkYdLzLl+pWTl/0rAqB7o3SUyEgynxJoqbwjIUuwtLlbNd/ReMypQIuBsecALUvAz250/5zFbYhIClCr/YO7zuX8ksw5pXEZG0XpAWgOKyp/ajClAOZqNcsMbLWebXqhgS7042qU9j4ZN9TKTikNjdkN6L36l9Bz9F68b4GdY4ZW66MX33NN5/6APPimQD4YVr7p+AodlTS2ASfKZjOSxiglM1jobZYsJ1mqQGEy9SJiSV9FBEvRIWJLyDQehaj6IYolkCawHhbpYQQuzsAY6QXLZTawoRes8K6nasd7MYWwmlLOVVISzfRzNXcNpJrkYc9R9Hm4zEAr9vA27F0tMU4n8q42JLqP3WxW4jWb2VKKTTGFoRKTa3p2ywM9pa093wyssJuSr9kU/ZDqMVwnRjaDqi1iohZSIqX9OhWQJqlKO+vZ75TSuSw7jtKTnKRclp96TCOr3pIO8n3RoQOeTiG+IsAOTMf9jgkYfWcE6Nwtc09gWmUW903XCsNmcnrEdLSD/Duy7AT4gyrAdyN7fH30zmGmio/4AUN2+8RwD5RWLrVX+9Te43eqNosHLI8S2iHylSZyPUXT64mEkp9FNQt0RyrbB6ObS6c7UHk7htiEpmdgWpZzhBZWWVMtrapOqloWWJXqsg+XTRe4UURBjZazBRpW44fVqCEUOgGkS9/p1R9IkkOnXGHoyhPHhkJ26GkRblQSFIARGwMh1wqgVlZHA1RrINZlmF3toSGGw5tqsmaFfLheId+GZ99VRMvLSF/u7rXYtN0WkPpotRea/l2KXvXKY7MjDa8qeS8/XY+hOpfXEMFo+TwYU1R7M33YSmiFPQu7NsY9d7d8p90JW+sO5T2AQ5E8WqEaVI1Jkp2/o+OELhSSnSC3He43HTUuP2+F++cu7p6Jfbdng8MGtu313OoF1f3h/hCB7JvhfqBxXy8ELr9shfuXLu7YdEIHjspWz3F7ruXYvf/1vq73ww16f0rmGX++nerLZzocQCqwHcfxeqHjOz727P9EzKGLeQ4Ty3cs5a5O6ELA8QA6VlihZ+jphyITz/VfA+2vgSzgMaM9x13fHd0hbozZgsbtWrH8woLTnI0rU/SXF5AeefVKX1MuSC7eyiyJZGLtmVYrseLyvBnazbx6M6p2iaoG8SP6Y0QFQSXCH9GgBPcW2NqPDlvG35AT+tt9QR6YvUbNqMvGpXzp2a5w8HYEOJWsP+0iaOfRgb67oB19Ysdm4LVgDrcD1OsqWm1vOy17jw7We9ZyaFp+GTEc3ELb3Q5tv4v2hEDC2w5t/8dHG3sdRSuhe/6Gd7W3hj68SujP0G48hD86DwHEmPWkCQe74C4Bx60i+JddIrj76EC/QwT3N6Hb2xndy6/N5AhHlA2Adgrpr7ctoTfXoxvfjG9kPahM+7oL68EPxLpdf4/Z/urJCpyrqN5v/mBB/Uan/JHSi38AUEsHCBjWu62fBgAA1iQAAFBLAQIUABQACAAIAGtG5DwY1rutnwYAANYkAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAA2QYAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" allowRescaling = "true" /> | <ggb_applet width="755" height="502" version="3.2" ggbBase64="UEsDBBQACAAIAGtG5DwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VrLcts2FF03X4HhIpuMaYJvTaRkFHuTmbTOxG6m0+kGIiEJNUUqBGhLnvxLvyGPP+je39QLgKRISn5ItlMnrRamCYDAxTnnPkCp/3IxS9AZzTnL0oGBTctANI2ymKWTgVGI8V5ovHzxpD+h2YSOcoLGWT4jYmA4pm3I9oK9ePJTn0+zc0QSNeQ9o+cDY0wSTg3E5zklMZ9SKlrtpFiwhJF8eTT6k0aCrzr0JK/TeQGriLyAtmgWv2G8ut1XC84TJg7ZGYtpjpIsGhi+B6bDf+9pLlhEkoHhWrrFHhh2pxOaHNk7zXJ2kaVCDl9NPoYWhDi7oPCkJdv6+2qjfVpECYsZSeVmlB0wCKFzFovpwAg8D6akbDIFWz3L0rNFWZbHx0su6Awtfqd5BjBblgR6Wd711B0Hu6h8TnU179Q09OyYCgG0cEQWdAXYJGdx6+Y1f5Ulq6Z5xlJxQOaiyBWnTtl0LJZyAVgrlwYP00lCyzYbIJ/S6HSULY4VCNjRU58s5+oRZdBocpAlWY5yCS9sfFJeR/qqxkhL61GWGmOpEeUcctK6H/dsNUJdR/qqRiUs1aaVO8fVrrFVLcM4kg0SRpBivfmEjChQa6AiZeJNdQMSOC23ivUDvxSzEfhAUwT1nPi+5uzvd+TTP6V5ShMtkhS4LbKCozMpRr2WMiSmEZvBre7ApXWSrl/BAN0a00lOK8O1B2nAVG9LiJ3m/n5lhLSBg62RgFAA+xFyL4fgXlyQ/JSiYfH3XzQ9Z+kpTTgRF9KJBTjQwJiZE9NAMRHwgAwKNKEzCi4klFyU2mrYhkYdLzLl+pWTl/0rAqB7o3SUyEgynxJoqbwjIUuwtLlbNd/ReMypQIuBsecALUvAz250/5zFbYhIClCr/YO7zuX8ksw5pXEZG0XpAWgOKyp/ajClAOZqNcsMbLWebXqhgS7042qU9j4ZN9TKTikNjdkN6L36l9Bz9F68b4GdY4ZW66MX33NN5/6APPimQD4YVr7p+AodlTS2ASfKZjOSxiglM1jobZYsJ1mqQGEy9SJiSV9FBEvRIWJLyDQehaj6IYolkCawHhbpYQQuzsAY6QXLZTawoRes8K6nasd7MYWwmlLOVVISzfRzNXcNpJrkYc9R9Hm4zEAr9vA27F0tMU4n8q42JLqP3WxW4jWb2VKKTTGFoRKTa3p2ywM9pa093wyssJuSr9kU/ZDqMVwnRjaDqi1iohZSIqX9OhWQJqlKO+vZ75TSuSw7jtKTnKRclp96TCOr3pIO8n3RoQOeTiG+IsAOTMf9jgkYfWcE6Nwtc09gWmUW903XCsNmcnrEdLSD/Duy7AT4gyrAdyN7fH30zmGmio/4AUN2+8RwD5RWLrVX+9Te43eqNosHLI8S2iHylSZyPUXT64mEkp9FNQt0RyrbB6ObS6c7UHk7htiEpmdgWpZzhBZWWVMtrapOqloWWJXqsg+XTRe4UURBjZazBRpW44fVqCEUOgGkS9/p1R9IkkOnXGHoyhPHhkJ26GkRblQSFIARGwMh1wqgVlZHA1RrINZlmF3toSGGw5tqsmaFfLheId+GZ99VRMvLSF/u7rXYtN0WkPpotRea/l2KXvXKY7MjDa8qeS8/XY+hOpfXEMFo+TwYU1R7M33YSmiFPQu7NsY9d7d8p90JW+sO5T2AQ5E8WqEaVI1Jkp2/o+OELhSSnSC3He43HTUuP2+F++cu7p6Jfbdng8MGtu313OoF1f3h/hCB7JvhfqBxXy8ELr9shfuXLu7YdEIHjspWz3F7ruXYvf/1vq73ww16f0rmGX++nerLZzocQCqwHcfxeqHjOz727P9EzKGLeQ4Ty3cs5a5O6ELA8QA6VlihZ+jphyITz/VfA+2vgSzgMaM9x13fHd0hbozZgsbtWrH8woLTnI0rU/SXF5AeefVKX1MuSC7eyiyJZGLtmVYrseLyvBnazbx6M6p2iaoG8SP6Y0QFQSXCH9GgBPcW2NqPDlvG35AT+tt9QR6YvUbNqMvGpXzp2a5w8HYEOJWsP+0iaOfRgb67oB19Ysdm4LVgDrcD1OsqWm1vOy17jw7We9ZyaFp+GTEc3ELb3Q5tv4v2hEDC2w5t/8dHG3sdRSuhe/6Gd7W3hj68SujP0G48hD86DwHEmPWkCQe74C4Bx60i+JddIrj76EC/QwT3N6Hb2xndy6/N5AhHlA2Adgrpr7ctoTfXoxvfjG9kPahM+7oL68EPxLpdf4/Z/urJCpyrqN5v/mBB/Uan/JHSi38AUEsHCBjWu62fBgAA1iQAAFBLAQIUABQACAAIAGtG5DwY1rutnwYAANYkAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAA2QYAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" allowRescaling = "true" /> |
Version vom 4. Juli 2010, 08:15 Uhr
schwacher Außenwinkelsatz?
In der Vorlesung wurde angedeutet, dass es im Rahmen der absoluten Geometrie nicht möglich ist, den Satz über die Summe der größen der Innenwinkel eines Dreiecks zu beweisen.
Bemerkung: Sie haben sicherlich bemerkt, dass obige Applikation nicht für alle Lagen der Punkte