Satz des Thales: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Beweisführung)
(Variante)
Zeile 15: Zeile 15:
  
 
===Variante===
 
===Variante===
<ggb_applet width="884" height="510"  version="3.2" ggbBase64="UEsDBBQACAAIAIW97jwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vzbbts4Gr7eeQrCCxTtRVSJpE7TZAZuegTa7aLpdoG9KWSZtjmWJY8kJ05eZp5h25nOzdz1vs+0P0nJsQ5WLDtOnGCNALYoiiK/7z/ykMOf55MAnbI44VF41DE0vYNY6Ed9Hg6POrN0cOB0fv7ph8Mhi4asF3toEMUTLz3qEA13RPmM//TD3w6TUXSGvEBW+cjZ2VFn4AUJ66BkGjOvn4wYSwvl3mzOA+7F5+96vzA/TS5vqEZeh9MZvCWNZ1DmT/pveJJfPpYvnAY8fcZPeZ/FKIj8o45lQtfh10cWp9z3gqMO1VUJPurg0k0oIuLuKIr5RRSmovpl4wMoQSjhFwwQwaLs8LEc6CGb+QHvcy8Ug5H9gEoInfF+OjrqOA6FJhkfjqCvpu6o1vwoivsn50nKJmj+HxZH0B2DCqDP1RVRVwn0i4nn5K3lK9kMOz1haQq0JMibs0vAhjHvFy5eJ0+j4LJoGvEwPfam6SyWnJKs6CQ9Fy+Ad8Wiw91wGLCsDAPkI+aPe9H8RIFAVNMfzqfyEdmh3vA4CqIYxQJeEypk3z31LeuIni5q6bKOLmtkbYhGF/cNF8sa8runvmWtgIeqa9nIjXzUhp6/hidIFAgYQRQXgw+8HgNqO2gW8vRNfgEiMM6GaqgH/jGb9EAHloVg0aZxXW0ePi6Jz+GYxSELlJCEwO0smiXoVAijepfsSJ/5fAKX6kYGiSfo+hd0QJX22TBmeceVBinA5F19WRBLxYeP806IPiTQVz8FUwDjScVYnrIzxpMBD/uzcAgj7qOs5NtfoxiKhCanoEUCgr6XwhPCKrCATRjoUCrlRYrbAre3nYXBiKTu51qe3b9kAG7Xyo6UMi+YjjwoydUj8M7BEiwPV7b3NuoXQRjwOeurkss3SWQSND/qHOgasUD9hCm0nQ66UDZR1lJqIxRePk4yTtVYrxj1009GddxFgVqi/DZGTjRCs4FbuN3A/Wgy8UA0Qm8CAz/msR8wOVourDjydME68gwFgxrhLM1v+aq5rJEKjiCV3F+A5HeKBiEdgd6FLEmk1UqX7dNqEVsDaX1znNfqHDgJFp5C16I4QWiuZ673XFcvRBd5ydyQQinuGVnRhbHEDTjjmM9RN6/fzWt1wccdGLpGDdvSFx/oR5dk7+hS8UOIe9cUdYXAq879GqoBJMqgJVMwQQPuN/P+TynwRdr9CtvdZraLWtPdwlaYxvYq44VgeaU5BO89FQ0I2z5lrJ+BnHOKptCkdK9LsrVkVcDBUwsTyzGoa7iObmaaRjHBlk11U9dt2zKsbfTuDchdCf6u0rq3FRa8ZhaECC9A9jZUudbWbQudKxpw07IJNl3quhgTR1k1ollOiQGA+sCCYqhmYovaJqWm20aHS2rCJxCU+jxtpul1mEJUAAhVVEVy5VW4epaZzjaK8+wKxVnBhkUlHeKrp76ugZDdyH6js71ls1Fwqnh57NSWg8eaQcoyurnir2d4j9vIz/FGCGKdLqmzQPLWDS8Gp2YA+C7Frms72JD4U810MCWEuI7pODp2t4H/hA1FeYmA41Wmt9fMQ5K1liPdW219zU0CHgin+lwhC9XfZbVHN2CZsQZIF0GXqkBxiSBhl0FxhFnQHdvUKaVEtxsMcxmIJsMsuQiEyCwMMYBRzbrGjE1Fuvsu/BB7YSKmPYqx84YC0a0IRL+dQPT3PwJetn+G6RqW6brEBMotW+VWEGtiy9Qdy7EhyQfDmNk/oZcEu7plWq4Nf5X8f0NvfNukP62QztqRzu4S6aDS1LR13dGJ6Zq2q2yupRm6TRzLFiW2JR2s0HRsaIZDgXaq20C8A1noHSe9u4r0QTvSB6tJp3tHOsTdtkGoZRoQTzuU2pYjabc1YmNqEwu7DnEtXbnaAwMMvA2OQDexC4bANZwG1sujvVusD9uxPrxLqr5L1m9d19l8GkNPRKyUwfqBzVOwZnDjqPPg11mUPjlJY+aPGTp+i8543EcMusAuGPdHIUvRg78b+pOHp9DAGw2dRvGQDVmPhY/Us/J9RWFI4QWd4tv2NrJLUi9OZe6BhCiAfTfcpY+TRdr60uwTfMzlUHt1QteLooB54WKcI4kDvH7GylOY20wlrz/8d4NBAozCQGkWubpmo454U8mFLDvxRzFPU2T8eFUmF5wPo3BVKoE8XGdgPnJozx8bqlrvk6Eq+vIHOepMrsr81Etz1BbNXa8dqhdPXuXHMMlyJr5MkdFGQlcLVyXH+rSPg93DROv2TXIjj/794nHdqUxq1c9l7rdzbWRycq94rE+IDlZkRHc5Iap3YG/zqQ/pl45XOTCsqvmfsKo4yR2Yp1YNW7swfGtSpOPCfogb8GECtT0c7cZKs8L2HdSv4+xqGec2TN8tOrFdEHmwYg6wfgrw4G7NATZT6d0zKu9zYFmb6+NCrj8MRF6f+CMWjgM+ZOjhB8aDg0fPYsblJIBM989Y3GchGrLBLBQ/xJ6piRePOYvT9fN+vG3eXyMTu8r7dbfwyYTCxptl+nyfMn01iWFYuFFB6lJ9fEWqL/db1sdJx6sS/e//bQ6D5KbABSZQu4SkrlHbJhYoJZhiYho22dr0/FJFPd8MqnCXhmiBPFlT1EiDrSAlW+HF/uVarZUXBkF09p4NAjaXSFesA5tAl8Tu3feL3a+lOu24W6z0SO6qy77fP7fi7vOV3NGb5o6uyV2Tw95P7roFvavh7ksr7r6UuQMb6BIwJhawRg1i5/uar5e7PHXNXX5h/4V5b8k7LiSXNeT93oq838vkmZCNu7ZpQYIByTrOw5j/c3cld/UxFSnEVH3O0DgKhwAgBHMhegrNJ2c8HLNgjXBKLq+czE5QEgWBeLxfbCLx0gs0ZmGYPeiFZ0y00mIBhmwbiNWwvbNAzFpsrVsZe9VyQgucPANOTmaTCQM4ExRHiSfBG8bf/hJA/ltBi3qMo2NFEouHvJciDs/EYgkMar1n/ihd1EYPxTmdl/G3r99+Y8jVHz2Rz3kzf4SAkhAaEmeQ/FHUg2fEStr6DNFtGYpukKFsFkMXObFbWi5bJ1oubtN7fttnCq5rn56pYZzvDILMcvljXN++0Bf3Dy6i4a32jr6PUi8tu9TnyqUePPz++ZFyqy8qbvX5A28aJU+afWtJWrNHNiNhF3uTTc2h1KHYIK5rOdjOtBNrOsE6xGmmCfctl2yDcF3MkiMhYX6hIH5ejVz+aBW5/HED6V6NqWxKGXYeuZg3EXXW68gyhaApX67SlI31Ze+0xtJM53qsT4Nu1GnIJYRFPfnaSk++XpmebZ9a1+hJ04zs/dCTmgNIz3MCy5yNmykrHEAa36kDSEZ+gFSd4wMtscUM6XUtY7SC/4WCv2KBClQELagI7hQV6tikoqQQUyqHTjWqW3Q50tw1RXUndcYVQl62cRIvN3QMBlZuW37vNK7dIKrVNYuUFxWu93xUUEH9VRvUX90f1B2NXFMuUefNXxY8+Kuq7/6zle/+s+y7qWYbmDiO6+jEgVD9Ks+9fPL9huYC2lj+gtM29PW8dtud6i9XOeWwmYvy8nZ4I4vbu5udWV7YLvqH7IzqwoMbRDNtrF+/q7i10wpZZFBVyGk7GZjeGxnIgwWiGRVZEDYR7tO93onXvKwe7dGyOsmQ1tvvoKeVZfX6GW2zMKM9+fZ1GGhI/euaRDXFflx/itnc7Dj9bmaRqUYKM6RqN6mp6WRlxLS+mPyyR2KS7y/CdmsxIRUxebz8343Edf4fzX76H1BLBwiYHQEm8woAAANNAABQSwECFAAUAAgACACFve48mB0BJvMKAAADTQAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAC0LAAAAAA==" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
+
<ggb_applet width="884" height="620"  version="3.2" ggbBase64="UEsDBBQACAAIACG+7jwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vzbbts4Gr7eeQrCCxTtRVSKpE7TZAZuegTa7aLpdoG9KWSZtjmWJY8kJ05eZp5h25nOzdz1vs+0P0nJsSzZsew4cYI1AtiiKB6+7z+SVA5/no5CdMqTVMTRUcs0cAvxKIi7IuoftSZZ78Bt/fzTD4d9Hvd5J/FRL05GfnbUogZpyfKJ+OmHvx2mg/gM+aGq8lHws6NWzw9T3kLpOOF+Nx1wnpXK/clUhMJPzt91fuFBll7e0I28jsYT6CVLJlAWjLpvRFpcPlYdjkORPROnossTFMbBUcu2YOjw6yNPMhH44VGLYV1Cjlpk4SYUUXl3ECfiIo4yWf2y8R6UIJSKCw6IEFl2+FhN9JBPglB0hR/JyahxQCWEzkQ3Gxy1XJdBk1z0BzBW23R1a0EcJ92T8zTjIzT9D09iGI7JJNDn+orqqxTGBR1aWN2av1LN8NMTnmVAS4r8Kb8ErJ+Ibunidfo0Di+LxrGIsmN/nE0SxSnNi06yc9kB9JXIAbejfsjzMgKQD3gw7MTTEw0C1U1/OB+rR9SAOv3jOIwTlEh4LaiQf3f0t6ojRzqrhVUdrGrkbchGZ/dNj6ga6rujv1WtUER6aPnMzWLWJi66ESmSBRJGEMXZ5EO/w4HaFppEIntTXIAIDPOpmvqBf0xGHdCBeSGYtWleV5uHjxfE53DIk4iHWkgi4HYST1J0KoVR96UG0uWBGMGlvpFD4ku6/gUD0KVd3k94MXCtQRowdRfPC+JC8eHjYhByDCmMNcjAFMB8MjmXp/yMi7Qnou4k6sOMuygv+fbXIIEiqckZaJGEoOtn8IS0CjzkIw46lCl5UeI2w+1ta2YwYqX7hZbn9y8ZgNu1sqOkzA/HAx9KCvUI/XOwBPPTVe29jbtlEHpiyru65LInhUyKpketA2xQG9RPmkLHbaELbRNVLa02UuHV4zTnVM/1ilk//WRW510WqDnKb2Pm1KAsn7hNmk08iEcjH0Qj8kcw8WORBCFXsxXSiiMfS9aRb2oY9AwnWXEr0M3ljVRwBKkUwQykoFU2CNkA9C7iaaqsVjZvn5aL2BpI481xXmtw4CR4dApDi5MUoSnOXe851h2ii6JkaiqhlPfMvOjCnOMGnHEipqhd1G8Xtdrg4w5MbDDTsfHsA+No07yPNpM/pLi3LVlXCrwe3K+RnkCqDVo6BhPUE8Fq3v+pBL5Me1Bhu72a7bLWtLewFZa5vcr4EVheZQ7Be49lA9K2jznv5iAXnKIxNKnc65xszVkVcPDMJtR2TeaZnoutXNMYocR2GLYwdhzbtLfRuzcgdwvwt7XWva2w4K9mQYrwDGR/Q5VrbN220LmyAbdshxLLY55HCHW1VaOG7S4wAFAf2FAM1SxiM8dizPKa6PCCmogRBKWByFbT9DrKICoAhCqqorjyK1w9y01nE8V5doXiLGHDZooO+dXRX9dAyG5kf6WzvWWzUXKqZH7uzFGTJ4ZJF2V0c8Vfz/AeN5Gf440QJJjNqbNE8tYNLwGnZgL4HiOe57jEVPgzw3IJo5R6ruW6mHjbwH/C+7J8gYDjZaa3s5qHNG+tQLqz3PpamwQ8EE51hUYWqr/Law9uwDITA5Aug65UgZEFgqRdBsWRZgG7joUZYxQ7KwzzIhCrDLPiIpQiMzPEAEY16xpyPpbp7rvoQ+JHqVz2KMfOGwpEuyIQ3WYC0d3/CHje/pmWZ9qW51ELKLcdnVtBrElsC7u260CSD4Yxt39SLynxsG3ZngN/lfx/Q29826Q/rZDOm5HO7xLpoNLMcjB2MbU8y/G0zbUNEzvUtR1Z4tjKwUpNJ6ZhugxoZ9gB4l3IQu846e1lpPeakd5bTjrbO9Ih7nZMymzLhHjaZcyxXUW7Y1CHMIfaxHOpZ2Ptag9MMPAOOAJsEQ8MgVcslq4127vFer8Z6/27pOq7ZP3WdZ1PxwmMRMZKOawf+DQDawY3jloPfp3E2ZOTLOHBkKPjt+hMJF3EYQj8gotgEPEMPfi7iZ88PIUG3hjoNE76vM87PHqkn1X9lYUhgw5a5d72NrJLMz/JVO6BpCiAfTe9uY+bR9p4bvUJPtZ8qL08oevEccj9aDbPgcIBup/wCqnbrCWvP/93vV4KlMJMWR66etZKJfHHigxVdhIMEpFlyPzxqlQuPO/H0bJcAvmkzsJ8FNBeMDR1tc4nU1cM1A961BpdlfrpTgvUZs1dryGql09R5ce06HwqPk+R2UREl0tXJcn6tI+T3cNM6/Zt8koeg/vF47prmcyuX8zcb++6ksnRveKxPiM6WJIS3eWMqN6BvS3WPpRfOl7mwIiuFnwiuuKocGC+3jZs7MLIrUkRJqUDETfgwyRqezjbjZVmie07qN/I2dU+zm2Yvlt0Yrsg8mDJImD9GuDB3VoEXE2lf8+ovM+BZW2yT0rJfj+UiX0aDHg0DEWfo4cfuAgPHj1LuFCrACrfP+NJl0eoz3uTSP6Qh6ZGfjIUPMnWT/zJtol/jUzsKvHHXumTC4VDNkv1xV6l+noZw7TJSg2py/XJFbm+OnFZHygdL8v0v/93dRykjgXOMIHaC1BigzkOtUErwRZTy3To1rbnlyrqxXFQjbuyRDPk6ZqyRlcYC7pgLPwkuNyttYvCMIzP3vNeyKcK6Yos8REMSZ7ffT87/7pQpxl3s70exV114/f750bcfb6SO3bT3LE1uVvlsfeTu3ZJ72q4+9KIuy+L3IER9CgYExtYYyZ1ipPN18tdkbsWPr90AsO6t+Qdl7LLGvJ+b0Te74vkWZCOe45lQ4YB2Top4pj/c3cld/VBFS0FVV3B0TCO+gAgRHMRegrNp2ciGvJwjXhKbbCcTE5QGoehfLxbbiL1sws05FGUP+hHZ1y20mALhm4bidWwvbNIzJ4drlsafNVywkqcPANOTiajEQc4U5TEqa/A6yff/pJA/ltDizpcoGNNEk/6opMhAc8kchMMar3nwSCb1UYP5Zs6L5NvX7/9xpGHHz1Rz/mTYICAkggakm8hBYO4A8/IvbT1GWLbMhTfIEP5MgaWSbG3sGG2TrhcPqj3/LbfKriuk3qWQUhxNghSy/mPeX0nQ1/cP7ioQbY6Pfo+zvxs0aU+1y714OH3z4+0W31RcavPH/jjOH2y2rcuSGv+yGYk7OJ0smW4jLmMmNTzbJc4uXYSA1OCIU6zLLhve3QbhOtilgIJBfMLDfHzauTyR6PI5Y8bSPdqTOWqlGHnkYt1E1FnvY7MUwia8uUqTdlYX/ZOa2zDcq/H+qzQjToNuYSwrCdfG+nJ1yvTs+1T6xo9WbUkez/0pOYVpOcFgYucDVdTVnoFaXinXkEyi1dI9Zt8oCWOXCK9rn2MRvC/0PBXLFCJirABFeGdokK/OKkpKcWU2qEzg2GbzUeau6ao7l2dYYWQl02cxMsNHYNJtNtW3zuNazeIarFh08Vdhet9QyqsoP6qCeqv7g/qrkGvKZeo8+YvSx78VdV3/9nId/+56LuZ4ZiEuq7nYupCqH6V555/9/2G1gKaWP6S0zbxel676Vn1l8uccrSai8X97ehGdrd3tzozv7Nd9g/5W6ozD25Sw3IIvn5XcWvvK+SRQVUhx81kYHxvZKAIFqhhVmRB2kS4z/b6KN7qffV4n/bVaQ41bn6GnlX21euXtK3Skvbo29d+aCD932tS3RT/cf01ZmuzN+p3s4zMDFpaItXnSS0D06Uh0/py8ss+yUlxxIjYjeWEVuTk8fx/OJLXxX81++l/UEsHCEUlU/byCgAAB00AAFBLAQIUABQACAAIACG+7jxFJVP28goAAAdNAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAALAsAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
--[[Benutzer:&quot;chris&quot;07|&quot;chris&quot;07]] 22:06, 14. Jul. 2010 (UTC)
+
--[[Benutzer:&quot;chris&quot;07|&quot;chris&quot;07]] 22:10, 14. Jul. 2010 (UTC)
  
 
=induktive Satzfindung=
 
=induktive Satzfindung=

Version vom 14. Juli 2010, 23:10 Uhr

Inhaltsverzeichnis

Test

Hier geben Ihnen die Didaktikspezialisten Tipps zum Satz des Thales

Geogebratest


Funktionale Betrachtung


Beweisführung

Variante

--"chris"07 22:10, 14. Jul. 2010 (UTC)

induktive Satzfindung

Sehnen verschieben

--Mirasol 13:52, 9. Jul. 2010 (UTC) Bewege den Punkt A, um die Sehne zu verschieben!


Variante a

--"chris"07 21:12, 14. Jul. 2010 (UTC)

Variante b

--"chris"07 21:12, 14. Jul. 2010 (UTC)

induktive Satzfindung einer Umkehrung

(vgl. Idee von Frau "komplizierter Doppelname" in einer alten Klausur)
Kann bitte jemand den Satz auf richtige Formulierung kontrollieren?!
Welche speziellen Art der Einführung von Sätzen im induktiven Bereich lässt sich dieses Beispiel zuordnen?

Funktional