Lösung von Aufgabe 4.05’ S SoSe 17: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
*m.g.* (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „<div style="margin:0; margin-right:4px; border:1px solid #27408B; padding: 1em 1em 1em 1em; background-color:#FFFF99; align:left;"> {|width=90%| style="backgro…“) |
*m.g.* (Diskussion | Beiträge) |
||
Zeile 2: | Zeile 2: | ||
{|width=90%| style="background-color:#FFFF99; padding:1em" | {|width=90%| style="background-color:#FFFF99; padding:1em" | ||
| valign="top" | | | valign="top" | | ||
− | ==Aufgabe 4.05== | + | ==Aufgabe 4.05'== |
Wir gehen davon aus, dass wir der ebenen Geometrie ein kartesisches Koordinatensystem zugrunde gelegt haben. Bezüglich dieses Systems definieren wir die folgenden beiden Punktmengen: | Wir gehen davon aus, dass wir der ebenen Geometrie ein kartesisches Koordinatensystem zugrunde gelegt haben. Bezüglich dieses Systems definieren wir die folgenden beiden Punktmengen: | ||
#<math>A:=\left\{P\left(x_P,y_P\right)|y_p=\frac{3}{4}x_p - \frac{7}{8}\right\}</math> | #<math>A:=\left\{P\left(x_P,y_P\right)|y_p=\frac{3}{4}x_p - \frac{7}{8}\right\}</math> |
Aktuelle Version vom 12. Mai 2018, 11:00 Uhr
Aufgabe 4.05'Wir gehen davon aus, dass wir der ebenen Geometrie ein kartesisches Koordinatensystem zugrunde gelegt haben. Bezüglich dieses Systems definieren wir die folgenden beiden Punktmengen: Beweisen Sie . Lösung 1Lösung 2 |