Astroiden: Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „<div style="margin:0; margin-right:4px; border:1px solid #27408B; padding: 1em 1em 1em 1em; background-color:#B9D0F0; align:left;"> {|width=90%| style="backgro…“) |
*m.g.* (Diskussion | Beiträge) (→Aufgabe 3.1) |
||
| Zeile 6: | Zeile 6: | ||
==Aufgabe 3.1== | ==Aufgabe 3.1== | ||
Astroiden sind spezielle Hypozykloiden:<br /> | Astroiden sind spezielle Hypozykloiden:<br /> | ||
| + | |||
<ggb_applet width="603" height="627" version="4.0" ggbBase64="UEsDBBQACAAIALyObkEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAC8jm5BAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVabW/bthb+3P0KQhj24aK2+SZS6pwOSYDhFk3XosmG4X4ZaIl2uMiSJ8mOU+zH30NSkmU7cZM6d+0N4pAiD3l4znnOC+WMf1rPM7TSZWWK/CQgQxwgnSdFavLZSbCsp4Mo+On1d+OZLmZ6Uio0Lcq5qk8CbilNehJMNOaCRXSgYzEZ8KlMBxOC5YCohGOpxESSKEBoXZlXefGLmutqoRJ9mVzrubooElU7xtd1vXg1Gt3e3g5bVsOinI1ms8lwXaUBgmPm1UnQdF7BdluLbpkjpxiT0e/vLvz2A5NXtcoTHSArwtK8/u7F+NbkaXGLbk1aX58EgsQButZmdg0yyQhkGlmiBShkoZParHQFS3uPTuZ6vggcmcrt/AvfQ1knToBSszKpLk8CPJSUSS7jCAvCopixABWl0Xnd0JKG56jdbbwy+tZva3uOIw9QXRTZRNkd0d9/I4opRi9tQ3xDoRHCT2E/hplvqG+4b0JPw/1y7km5p+GehsMZV6Yyk0yfBFOVVaBBk09LsF73XNV3mXbnaQY20pOXIFNlPgExw6BSr3IYx/il/Qj4cNzouick6XGty+UTmbYsBWaPZ0mPEpS1PDmP9nnS8AExxQGmXu7HyEnCnmqBlft1nz2O7JCYuxz983EMBf9HRByPWlcZN96BqmtL26Cn1vPK+guLURhb2BMUgm8ICSgPEYmhkRSBNyASIh7CI4mQsK1ETMIERwxFyNIRhpxzhBH84dJtJlAIm9lRCT6JCDDiKGSIOJ/iCDwJOb8EH6UMKMIQhbDIsifUbsEE4gKeWIQ4nNG6pCRAyGAhPAN7ihhBzC4mElGBhN2PcOvqIrJHhy0pEhgJYjcErwaP9t4M9BFiVhrRqMvki2W9paJknrbdulh0tgBqiEebqOfj01ZQfDHO1ERnkCcurSURWqnMeoRjNC3yGjVGpNiPzUq1uDZJdanrGlZV6E+1Uheq1uufgbpqeTvapMirD2VRnxfZcp5XCCVFhrszFxnp9Wl3anhgvQnenwh7E6LXl/fyLWAGLSsN/IuyaslVmr6xFJvQAJp8n2d3Z6VWN4vCbIsxHrmUM9bLJDOpUflvAFbLxeoFdRnIhqs2A4Vx3B6kKNPLuwoQjNb/0WUBeozkUAiCRUQ4IxENA3TnZyDIDjkmEvKLIELEEk6WKOt6VMghpiGnhHKGJXC6e2AGtnOM9aqzj1rrTvRZad26Eds+vKnOimwz5IQ/V4t6WbrKATiVVqTTfJZpBxAXayEtJzeTYn3p3Zv5va7uFvDUwGQyc0pHEBhoCDLOmnbiW0djT9ZRYUeDHUUHNZN28ySmjsK1E986KsCuP1ojKWnFJLhlYyoXznCw5TQO+DbJL3NTX7QPtUluGkmJp/9lOZ/oDj7bW5Jn2nI82oHX+EaXuc4aNIMll8Wy8s7ZA3qqEzOHRz/RKERZY/0KB/CjqZ6Vuj135moyry43i/tA3Rt2W/1cFvM3+eoKkLBzgPGoPeW4SkqzsIBDE8gAN3qDqdRUChJI2l9n3Q9ET2yiAPXUVjXgmMv6ugBTz4ezIayDmAKj1vMyPYdCC9UOYA6jnarfuQrO6hQVkz8hrO2YYmMzmH4AbEhli2tla7xG7Ezd6XJLEW63d0Wqt+KjykH7Tgbw8IXdwNp3obVHhj8vdBawofOnrRgFGq/Q2rNFd037yVfvvny1klof22LqR/ctCF5rT+LGvn/3fYMqr7o9JebLuS5N0qnpo1MjrF02u3aH2FJtm+P9op40j1EueaRyyf3KvUe1+D7V9oVOivlc5SnKXcVybsok08EmhSpsAYQUsQrwcizrduKt36zZYk+DAOGe/t5+TRhuImANmfkGrh+VC9Odkmzn3yZNdd5pFzKVzldwUEiMcK3DzaXxDrc4bEfWoJyBhyhphj6RHj7ARqVZo9OW/rSlOoWMPvA91mx6ytu9TsOm5w/zV+7PX/koaesTMwX13oPst/vIXi9KENmSNNou4fa7Bsh8RCPEfRl0GP7lLvzxsM2kj0b2F+IODVC5h73kKdhL9rF3lJ8+Fn34m0cfHobCFlhHAfBhu77Ja0jiIMWOaRNv2vUpVAl7pj31k2eHLbyd5E4/Z+H7w4u9vs18M/HNl9p4k6xAZzI8Ol09nJi2BT/7dgTv5B78bwR3pVYnF1yx9kOSiCPCiMRYxlLC3aFJ0Jl9Q4XmJnfeNldwWDGkERCEcCUgMg4juDmqSQW3sFpfJlAN5ptXdj5NNbcYSZ3T2btIU5SErjM1615FB0Wa+QRFqdoywMPJ72D8IfjoSuFLIpAqk57FunJ3t56D6xgPGY1pSOKYQyc8XIX06vkHgsbHoobCdidinPmgYK2OFLXJYTdsnP2gFkX141OiRrvkn6tM3k+nla5dmODCwSc+VLf0nSu0eoYfylgMnzbE8IjiGEssqeAx5pw/X4X8x81eJfGItN0q1dlrP3GnT0nc6bOapi1Y/v+rRkDDfs7eB0iTwvch8uSa8nNIeCjRv/UwSPdgcO4nvDPDX5DlKZ57/k2lPSGsVjkjJIplRBrPFJzKSAoci0iELP5yx3xiqGxUO+DoX6iLl73ouG2Hp0fN868ZNal02mXhY8Mm5/F9YZOKMIw4CwUUATLm8tmi5ofPeMqlntnxQ0Hz/AFbqT/IYTtVzd6tDeyCIwqPoy8+fTtQIkIsWIhjLgiOpWhLRUJD3P8RzhQ2NApOaCSliCTYicb8iKi8E+rMfJGZxNSdijNbnHRBDKy5/ybxRuuFfYH7Pr8qVV7Z74c9zecrGqgll9Wul/Ytbt107xpU1WUBhethk2du6+4a1K55VqsfLjZ7zimYMyq/v6Y54ja87WLqES84rvS6Js1Ljh/+Whb1j61uEKz3I8H+a48algXbe3xNBzLVhbrSv2/jrPnWqdKlmXZfMrrvGXDQArx9NVmrsv5gwxbyXkgwZRGjYUhtpS7BUk0ViSklIY+pkMzmrX447Ct61H8v7b75af6J4fV/AVBLBwhp7RjmxAgAAGEhAABQSwECFAAUAAgACAC8jm5BRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIALyObkFp7RjmxAgAAGEhAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAXAkAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /><br /><br /> | <ggb_applet width="603" height="627" version="4.0" ggbBase64="UEsDBBQACAAIALyObkEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAC8jm5BAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVabW/bthb+3P0KQhj24aK2+SZS6pwOSYDhFk3XosmG4X4ZaIl2uMiSJ8mOU+zH30NSkmU7cZM6d+0N4pAiD3l4znnOC+WMf1rPM7TSZWWK/CQgQxwgnSdFavLZSbCsp4Mo+On1d+OZLmZ6Uio0Lcq5qk8CbilNehJMNOaCRXSgYzEZ8KlMBxOC5YCohGOpxESSKEBoXZlXefGLmutqoRJ9mVzrubooElU7xtd1vXg1Gt3e3g5bVsOinI1ms8lwXaUBgmPm1UnQdF7BdluLbpkjpxiT0e/vLvz2A5NXtcoTHSArwtK8/u7F+NbkaXGLbk1aX58EgsQButZmdg0yyQhkGlmiBShkoZParHQFS3uPTuZ6vggcmcrt/AvfQ1knToBSszKpLk8CPJSUSS7jCAvCopixABWl0Xnd0JKG56jdbbwy+tZva3uOIw9QXRTZRNkd0d9/I4opRi9tQ3xDoRHCT2E/hplvqG+4b0JPw/1y7km5p+GehsMZV6Yyk0yfBFOVVaBBk09LsF73XNV3mXbnaQY20pOXIFNlPgExw6BSr3IYx/il/Qj4cNzouick6XGty+UTmbYsBWaPZ0mPEpS1PDmP9nnS8AExxQGmXu7HyEnCnmqBlft1nz2O7JCYuxz983EMBf9HRByPWlcZN96BqmtL26Cn1vPK+guLURhb2BMUgm8ICSgPEYmhkRSBNyASIh7CI4mQsK1ETMIERwxFyNIRhpxzhBH84dJtJlAIm9lRCT6JCDDiKGSIOJ/iCDwJOb8EH6UMKMIQhbDIsifUbsEE4gKeWIQ4nNG6pCRAyGAhPAN7ihhBzC4mElGBhN2PcOvqIrJHhy0pEhgJYjcErwaP9t4M9BFiVhrRqMvki2W9paJknrbdulh0tgBqiEebqOfj01ZQfDHO1ERnkCcurSURWqnMeoRjNC3yGjVGpNiPzUq1uDZJdanrGlZV6E+1Uheq1uufgbpqeTvapMirD2VRnxfZcp5XCCVFhrszFxnp9Wl3anhgvQnenwh7E6LXl/fyLWAGLSsN/IuyaslVmr6xFJvQAJp8n2d3Z6VWN4vCbIsxHrmUM9bLJDOpUflvAFbLxeoFdRnIhqs2A4Vx3B6kKNPLuwoQjNb/0WUBeozkUAiCRUQ4IxENA3TnZyDIDjkmEvKLIELEEk6WKOt6VMghpiGnhHKGJXC6e2AGtnOM9aqzj1rrTvRZad26Eds+vKnOimwz5IQ/V4t6WbrKATiVVqTTfJZpBxAXayEtJzeTYn3p3Zv5va7uFvDUwGQyc0pHEBhoCDLOmnbiW0djT9ZRYUeDHUUHNZN28ySmjsK1E986KsCuP1ojKWnFJLhlYyoXznCw5TQO+DbJL3NTX7QPtUluGkmJp/9lOZ/oDj7bW5Jn2nI82oHX+EaXuc4aNIMll8Wy8s7ZA3qqEzOHRz/RKERZY/0KB/CjqZ6Vuj135moyry43i/tA3Rt2W/1cFvM3+eoKkLBzgPGoPeW4SkqzsIBDE8gAN3qDqdRUChJI2l9n3Q9ET2yiAPXUVjXgmMv6ugBTz4ezIayDmAKj1vMyPYdCC9UOYA6jnarfuQrO6hQVkz8hrO2YYmMzmH4AbEhli2tla7xG7Ezd6XJLEW63d0Wqt+KjykH7Tgbw8IXdwNp3obVHhj8vdBawofOnrRgFGq/Q2rNFd037yVfvvny1klof22LqR/ctCF5rT+LGvn/3fYMqr7o9JebLuS5N0qnpo1MjrF02u3aH2FJtm+P9op40j1EueaRyyf3KvUe1+D7V9oVOivlc5SnKXcVybsok08EmhSpsAYQUsQrwcizrduKt36zZYk+DAOGe/t5+TRhuImANmfkGrh+VC9Odkmzn3yZNdd5pFzKVzldwUEiMcK3DzaXxDrc4bEfWoJyBhyhphj6RHj7ARqVZo9OW/rSlOoWMPvA91mx6ytu9TsOm5w/zV+7PX/koaesTMwX13oPst/vIXi9KENmSNNou4fa7Bsh8RCPEfRl0GP7lLvzxsM2kj0b2F+IODVC5h73kKdhL9rF3lJ8+Fn34m0cfHobCFlhHAfBhu77Ja0jiIMWOaRNv2vUpVAl7pj31k2eHLbyd5E4/Z+H7w4u9vs18M/HNl9p4k6xAZzI8Ol09nJi2BT/7dgTv5B78bwR3pVYnF1yx9kOSiCPCiMRYxlLC3aFJ0Jl9Q4XmJnfeNldwWDGkERCEcCUgMg4juDmqSQW3sFpfJlAN5ptXdj5NNbcYSZ3T2btIU5SErjM1615FB0Wa+QRFqdoywMPJ72D8IfjoSuFLIpAqk57FunJ3t56D6xgPGY1pSOKYQyc8XIX06vkHgsbHoobCdidinPmgYK2OFLXJYTdsnP2gFkX141OiRrvkn6tM3k+nla5dmODCwSc+VLf0nSu0eoYfylgMnzbE8IjiGEssqeAx5pw/X4X8x81eJfGItN0q1dlrP3GnT0nc6bOapi1Y/v+rRkDDfs7eB0iTwvch8uSa8nNIeCjRv/UwSPdgcO4nvDPDX5DlKZ57/k2lPSGsVjkjJIplRBrPFJzKSAoci0iELP5yx3xiqGxUO+DoX6iLl73ouG2Hp0fN868ZNal02mXhY8Mm5/F9YZOKMIw4CwUUATLm8tmi5ofPeMqlntnxQ0Hz/AFbqT/IYTtVzd6tDeyCIwqPoy8+fTtQIkIsWIhjLgiOpWhLRUJD3P8RzhQ2NApOaCSliCTYicb8iKi8E+rMfJGZxNSdijNbnHRBDKy5/ybxRuuFfYH7Pr8qVV7Z74c9zecrGqgll9Wul/Ytbt107xpU1WUBhethk2du6+4a1K55VqsfLjZ7zimYMyq/v6Y54ja87WLqES84rvS6Js1Ljh/+Whb1j61uEKz3I8H+a48algXbe3xNBzLVhbrSv2/jrPnWqdKlmXZfMrrvGXDQArx9NVmrsv5gwxbyXkgwZRGjYUhtpS7BUk0ViSklIY+pkMzmrX447Ct61H8v7b75af6J4fV/AVBLBwhp7RjmxAgAAGEhAABQSwECFAAUAAgACAC8jm5BRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIALyObkFp7RjmxAgAAGEhAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAXAkAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /><br /><br /> | ||
(a) Was muss für <math>R</math> (Radius des großen, festen Kreises), <math>r</math> (Radius des abrollenden kleinen Kreises) und <math>d</math> (Abstand des beschreibenden Punktes zum Mittelpunkt <math>M_k</math> des abrollenden Kreises) gelten, damit eine Astroide entsteht?<br /><br /> | (a) Was muss für <math>R</math> (Radius des großen, festen Kreises), <math>r</math> (Radius des abrollenden kleinen Kreises) und <math>d</math> (Abstand des beschreibenden Punktes zum Mittelpunkt <math>M_k</math> des abrollenden Kreises) gelten, damit eine Astroide entsteht?<br /><br /> | ||
| Zeile 15: | Zeile 16: | ||
(e) Geben Sie eine Parameterdarstellung für die Astroide <math>a</math> an.<br /><br /> | (e) Geben Sie eine Parameterdarstellung für die Astroide <math>a</math> an.<br /><br /> | ||
(f*) Geben Sie eine Parameterdarstellung für beliebige Hypozykloiden an.<br /><br /><br /> | (f*) Geben Sie eine Parameterdarstellung für beliebige Hypozykloiden an.<br /><br /><br /> | ||
| + | |||
==Aufgabe 3.1 - Lösung== | ==Aufgabe 3.1 - Lösung== | ||
Version vom 21. Juli 2018, 14:04 Uhr
ParameterdarstellungenAufgabe 3.1Astroiden sind spezielle Hypozykloiden:
(a) Was muss für Geben Sie eine Parameterdarstellung der Kurve an, die der Punkt Aufgabe 3.1 - LösungAufgabe 3.2Es seien Aufgabe 3.2 - LösungZunächst ist es wichtig zu wissen, dass man von einer geschlossenen Hypozykloide spricht, sobald der Punkt, dessen Position beim Abrollen die Hypozykloide beschreibt, wieder auf seiner Startposition ist. Aufgabe 3.3Es sei gerichtete Größen, VektorenAufgabe 3.4Warum gelten gleichförmige Kreisbewegungen als beschleunigte Bewegungen? |
(Radius des großen, festen Kreises),
(Radius des abrollenden kleinen Kreises) und
(Abstand des beschreibenden Punktes zum Mittelpunkt
des abrollenden Kreises) gelten, damit eine Astroide entsteht?
, dessen Schenkel die positive
Achse und der Strahl
sind.
derart mitgeführt wird, dass die Achsen von
bezüglich
die der kleine Kreis auf dem großen Kreis abgerollt ist.
an.
und
die Radien des großen, festen bzw. des kleinen abrollenden Kreises. Berechnen Sie, nach wieviel Umdrehungen des kleinen Kreises um seinen Mittelpunkt die entsprechende Hypozykloide geschlossen ist.
der Umfang des großen Kreises und
der Umfang des kleinen Kreises. Es gilt:
und
mit
mit
und 


gleichförmig auf einer Kreisbahn mit dem Radius
bewegt. Es gilt
. Unter
versteht man die Winkelgeschwindigkeit dieser Bewegung, wobei
die Größe des überstrichenen Winkels und
die dafür benötigte Zeit in Sekunden ist. 
