Satz des Thales: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Vielleicht 2)
(Variante)
Zeile 35: Zeile 35:
 
<ggb_applet width="1280" height="855"  version="3.2" ggbBase64="UEsDBBQACAAIAHp86TwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VtLc9u2Fl7f/gqMFl10JjJAgK+5VjqSnTjpxDedOG1n7iZDUZCEa4pUScqW9avaJul71e77m+4BQMqkqIcpy4mcsTc0ARA4ON/5zgOkDr+cjgJ0weNERGGrQZq4gXjoRz0RDlqNSdp/5DS+fPzZ4YBHA96NPdSP4pGXthq0aTRk+0Q8/uxfh8kwukReoIZ8K/hlq9H3goQ3UDKOuddLhpynpXZvMhWB8OKrl93/cT9Nrjv0JM/D8QRWSeMJtPmj3guR5LcHasFxINJjcSF6PEZB5Lcalgmiw3/f8jgVvhe0GgzrFqPVMBY6oYnK3mEUi1kUpnL49eR9aEEoETMOGnFk2+GB2ughn/iB6AkvlJtRcsAghC5FLx3CWMORc3IxGIKwjkn1dH4Uxb2zqyTlIzT9L48jEM20pKav9B21TXmXgGCwoolVV/FOTcMvzniaAi4J8qb8WmODWPRKN8+TThRcN40jEaZH3jidxApUmjWdpVdyAVgrlgK3w0HAszYDdD7k/nk3mp5pLVA99eursXpECdQdHEVBFKNY6teEAdm1q69qjJR0PgqrMViNyOaQk877iWuoEera1Vc1KhChFi3bOcl3TXC+jEiQbJBqBFucbz7wuhywbaBJKNIX+Q3YwHm2VaIf+M9k1AUSFK1gPifZ1ZyHBwv2c3jO45AH2khCwHYSTRJ0Ia1Rr6UE6XFfjOBWd2Qq8SRc34AAurXHBzHPBdcU0gpTvbhoiAvNhwe5EFKGBGT1U/AFsJ9U7kVSNQWatBqnXzVQz0tlm5zsMorPFa9f82mKvG50AT0dfslF0v/7z2E8CQcAIg+k4r4TMZpx4Q9DHqIw8oeoJzg6S2OwMY5OO60YcRE20bHXm8TQy8MU2DKEwTOYD8FO4dkETDI8D8SAo+OYC/XoCPbfg2HyAfA0coS87XiJSC5FeM4DmLX9TX8A4vSQ9BXfqdZkMhpxJEb5TIjHoDN4MgG5ZpPEg+4QEQf/9QNIBY8N4r//DDnKZxnLWbK5rsfPJ4mkXK58WGmYBxy6U5Qq9ijyza3otDH3n5FyhbnTy/qv7RG6lzJJcc4LxkMPWnJnEXhXIGYRfDXfadQrm4QXgmkpvEHhYzmBNN4x570sGKQZ49EYplT+o2CZyqASNG01HsHKQNorJQL8M9OPq1Ha20hHqVamGRW0Ujaop/1pqIc1XWdL7fjRaOSB2YXeCFY6ErEfcKUUIUMk8rC0IeQRqSutiEmad/h6smyKiqqB78Kfq9JvlF1tOgSPFvIkUfEgLXr+1XgUdr8KELw9HDcSDsIvDy9AtChOEJriDKkrrBdEs7xlSrTdQh/JmmakgAwgH4spaufj2/moNqQPjwzA1JWBqk2zidssx7dt5ozQEn0faqkTHR/AgHzRF/56qF/AZheAbmugTytAe+uBlnqbQ+RtiXM5+m0m3i1wviaOhge0qTKkmWZgDVtY0LwYQd7oi3S95p+HKcRt2PSC+n2tfg8uMqfMd1XA4Wg9DmXfdrSVb7OY0rG8dPXl9lqW2t3We5dVd8YHsn1BcUerHFR3vb6SbLZcI93Vpmvv0kXdKmZUjZfgzHjBJ1Qy2jV7WGe9So2BDDlza4UwVU0ezzkfy6z9Zfg69sJElm96TCEpXRGJS16jt//RYVfBGhamzMWW6ZiYuo5jmW7OjWr7LPNNd+2TvlauY9EfLfKpU8f/dLbyP8TQpZ667kt+hZumgQ3XdDF1mIFdSwEmIzS2DYMSkzLbcG7l2b6OgqtBFC73bB0dEqoODuq8AOoLkkWON0QP9NU/kDh035BNkOllc1DmE94dHfNi3iQKYHmZ40vq4LvatSw6dqmYj7Oh7WMmWJddtC6qbM5smmzBEqWLMMBHWNShxGWEGJhA+248xgeIA4tg+fcPrOVYsSYzoZ0BSsS0XcwyrFjTYZS6xCAGNQ2L3l+ouvcPqnnGP8+a1idNHx2BcphQx6g1g8Q/P66PAeqsbw4GjJbPgzyTTIekaYJ1uxY1LNtljmtZG8u3tZkYwdVczLwhnnXyWy/2r8OvlTcGQXT5ivcDPlW6LCse8B2BRPLY/dX81HoBv7rVSWdVVc3rVSf8flUny30ilCjLAhhEfoINA1OLQRSzHdu097mQuQns2anZUQX2fj3Y+/cL9iUnKthd+PtEoK162kE9aAf7X/RWgTWvDxt2dVT2keLmnKEqbnaqcfOnWnHzp8W4iZs2JYZlOBA2LVt6t1smQsuIuovAuYjVBw+cm7OaavT8520tdN4+oLNLdE435ZzvaqHzroqOQ12TUmY6jmFbtrUtOgQbpU8HSlXELuAx9xGeTh6hVpHnfS143j/AUwOedYeix9VD0RqV0x69ciZUJvKFP5KV1U1Sapbtu3pb/2TDifK90R1pUmeuLuc2x8avotRLF9l/rNkPGYmi/5MK/Y8/98ZR8u/1PmDBcLNHtjPfu3irSIymaxHMqEstIo/nWfYaxXANg1GDYBebzHJvpd9lzjVT7xOt3YIuyy7251ou9ueN+Yn54GJrkSDDRVPh7QYqbE2I/aOFPK6jFgODIS61MbYzWrg2sWzGsM0sbFsG2zktigovk2MVRX6pRZFfNlKEPVBkC4qUiPLuRkS5JV32jjRu08W2bVq242KXmZRknGG4GGBozVzmxpzZxJxV/Pm1Fn9+3ZjFb8ufuy6B7wF9SiR6v4pET+tQ5uleEQTca+HPyNPXcjO+q6iykidPq6z4rRYrftvICuOBFTepzk4+mdIWrFrXEo9o0ynbN91dNfvsE6lm3SbOill2F8XsSbmYfVbh+0n9ZORk7xIQArkGsyljlsNcSN5Z9rrUaEIFa9rYgjZIUIya9rfZv2bqfaa1e7Iq0/i9lk/9fWOmvuwTgodMfTUJipGPmU381w/oC5Qn6ys5sTUz9o4fbpMQA+IxZS41LGLRPP9wXcyAFo5lmSYzpVXsmB9FzZdZsoorf9Tiyh9VrlgmVBwOppZlU3AGH/7F1Mt+P+Gp+gwxq4TuH4+W/L4le6XovyEV0IbrMSt9qz7cyS9cPtR7+zrfJspPEwufke7qu7htfoTkLQFJ1ABJ3CuQan3tCyhZd/EBaRGmg+KPdeV9/gv9x/8HUEsHCFpZLGYbCQAA0z8AAFBLAQIUABQACAAIAHp86TxaWSxmGwkAANM/AAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAVQkAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 
<ggb_applet width="1280" height="855"  version="3.2" ggbBase64="UEsDBBQACAAIAHp86TwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VtLc9u2Fl7f/gqMFl10JjJAgK+5VjqSnTjpxDedOG1n7iZDUZCEa4pUScqW9avaJul71e77m+4BQMqkqIcpy4mcsTc0ARA4ON/5zgOkDr+cjgJ0weNERGGrQZq4gXjoRz0RDlqNSdp/5DS+fPzZ4YBHA96NPdSP4pGXthq0aTRk+0Q8/uxfh8kwukReoIZ8K/hlq9H3goQ3UDKOuddLhpynpXZvMhWB8OKrl93/cT9Nrjv0JM/D8QRWSeMJtPmj3guR5LcHasFxINJjcSF6PEZB5Lcalgmiw3/f8jgVvhe0GgzrFqPVMBY6oYnK3mEUi1kUpnL49eR9aEEoETMOGnFk2+GB2ughn/iB6AkvlJtRcsAghC5FLx3CWMORc3IxGIKwjkn1dH4Uxb2zqyTlIzT9L48jEM20pKav9B21TXmXgGCwoolVV/FOTcMvzniaAi4J8qb8WmODWPRKN8+TThRcN40jEaZH3jidxApUmjWdpVdyAVgrlgK3w0HAszYDdD7k/nk3mp5pLVA99eursXpECdQdHEVBFKNY6teEAdm1q69qjJR0PgqrMViNyOaQk877iWuoEera1Vc1KhChFi3bOcl3TXC+jEiQbJBqBFucbz7wuhywbaBJKNIX+Q3YwHm2VaIf+M9k1AUSFK1gPifZ1ZyHBwv2c3jO45AH2khCwHYSTRJ0Ia1Rr6UE6XFfjOBWd2Qq8SRc34AAurXHBzHPBdcU0gpTvbhoiAvNhwe5EFKGBGT1U/AFsJ9U7kVSNQWatBqnXzVQz0tlm5zsMorPFa9f82mKvG50AT0dfslF0v/7z2E8CQcAIg+k4r4TMZpx4Q9DHqIw8oeoJzg6S2OwMY5OO60YcRE20bHXm8TQy8MU2DKEwTOYD8FO4dkETDI8D8SAo+OYC/XoCPbfg2HyAfA0coS87XiJSC5FeM4DmLX9TX8A4vSQ9BXfqdZkMhpxJEb5TIjHoDN4MgG5ZpPEg+4QEQf/9QNIBY8N4r//DDnKZxnLWbK5rsfPJ4mkXK58WGmYBxy6U5Qq9ijyza3otDH3n5FyhbnTy/qv7RG6lzJJcc4LxkMPWnJnEXhXIGYRfDXfadQrm4QXgmkpvEHhYzmBNN4x570sGKQZ49EYplT+o2CZyqASNG01HsHKQNorJQL8M9OPq1Ha20hHqVamGRW0Ujaop/1pqIc1XWdL7fjRaOSB2YXeCFY6ErEfcKUUIUMk8rC0IeQRqSutiEmad/h6smyKiqqB78Kfq9JvlF1tOgSPFvIkUfEgLXr+1XgUdr8KELw9HDcSDsIvDy9AtChOEJriDKkrrBdEs7xlSrTdQh/JmmakgAwgH4spaufj2/moNqQPjwzA1JWBqk2zidssx7dt5ozQEn0faqkTHR/AgHzRF/56qF/AZheAbmugTytAe+uBlnqbQ+RtiXM5+m0m3i1wviaOhge0qTKkmWZgDVtY0LwYQd7oi3S95p+HKcRt2PSC+n2tfg8uMqfMd1XA4Wg9DmXfdrSVb7OY0rG8dPXl9lqW2t3We5dVd8YHsn1BcUerHFR3vb6SbLZcI93Vpmvv0kXdKmZUjZfgzHjBJ1Qy2jV7WGe9So2BDDlza4UwVU0ezzkfy6z9Zfg69sJElm96TCEpXRGJS16jt//RYVfBGhamzMWW6ZiYuo5jmW7OjWr7LPNNd+2TvlauY9EfLfKpU8f/dLbyP8TQpZ667kt+hZumgQ3XdDF1mIFdSwEmIzS2DYMSkzLbcG7l2b6OgqtBFC73bB0dEqoODuq8AOoLkkWON0QP9NU/kDh035BNkOllc1DmE94dHfNi3iQKYHmZ40vq4LvatSw6dqmYj7Oh7WMmWJddtC6qbM5smmzBEqWLMMBHWNShxGWEGJhA+248xgeIA4tg+fcPrOVYsSYzoZ0BSsS0XcwyrFjTYZS6xCAGNQ2L3l+ouvcPqnnGP8+a1idNHx2BcphQx6g1g8Q/P66PAeqsbw4GjJbPgzyTTIekaYJ1uxY1LNtljmtZG8u3tZkYwdVczLwhnnXyWy/2r8OvlTcGQXT5ivcDPlW6LCse8B2BRPLY/dX81HoBv7rVSWdVVc3rVSf8flUny30ilCjLAhhEfoINA1OLQRSzHdu097mQuQns2anZUQX2fj3Y+/cL9iUnKthd+PtEoK162kE9aAf7X/RWgTWvDxt2dVT2keLmnKEqbnaqcfOnWnHzp8W4iZs2JYZlOBA2LVt6t1smQsuIuovAuYjVBw+cm7OaavT8520tdN4+oLNLdE435ZzvaqHzroqOQ12TUmY6jmFbtrUtOgQbpU8HSlXELuAx9xGeTh6hVpHnfS143j/AUwOedYeix9VD0RqV0x69ciZUJvKFP5KV1U1Sapbtu3pb/2TDifK90R1pUmeuLuc2x8avotRLF9l/rNkPGYmi/5MK/Y8/98ZR8u/1PmDBcLNHtjPfu3irSIymaxHMqEstIo/nWfYaxXANg1GDYBebzHJvpd9lzjVT7xOt3YIuyy7251ou9ueN+Yn54GJrkSDDRVPh7QYqbE2I/aOFPK6jFgODIS61MbYzWrg2sWzGsM0sbFsG2zktigovk2MVRX6pRZFfNlKEPVBkC4qUiPLuRkS5JV32jjRu08W2bVq242KXmZRknGG4GGBozVzmxpzZxJxV/Pm1Fn9+3ZjFb8ufuy6B7wF9SiR6v4pET+tQ5uleEQTca+HPyNPXcjO+q6iykidPq6z4rRYrftvICuOBFTepzk4+mdIWrFrXEo9o0ynbN91dNfvsE6lm3SbOill2F8XsSbmYfVbh+0n9ZORk7xIQArkGsyljlsNcSN5Z9rrUaEIFa9rYgjZIUIya9rfZv2bqfaa1e7Iq0/i9lk/9fWOmvuwTgodMfTUJipGPmU381w/oC5Qn6ys5sTUz9o4fbpMQA+IxZS41LGLRPP9wXcyAFo5lmSYzpVXsmB9FzZdZsoorf9Tiyh9VrlgmVBwOppZlU3AGH/7F1Mt+P+Gp+gwxq4TuH4+W/L4le6XovyEV0IbrMSt9qz7cyS9cPtR7+zrfJspPEwufke7qu7htfoTkLQFJ1ABJ3CuQan3tCyhZd/EBaRGmg+KPdeV9/gv9x/8HUEsHCFpZLGYbCQAA0z8AAFBLAQIUABQACAAIAHp86TxaWSxmGwkAANM/AAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAVQkAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
  
===Variante===
+
 
<ggb_applet width="884" height="620"  version="3.2" ggbBase64="UEsDBBQACAAIACG+7jwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vzbbts4Gr7eeQrCCxTtRVSKpE7TZAZuegTa7aLpdoG9KWSZtjmWJY8kJ05eZp5h25nOzdz1vs+0P0nJsSzZsew4cYI1AtiiKB6+7z+SVA5/no5CdMqTVMTRUcs0cAvxKIi7IuoftSZZ78Bt/fzTD4d9Hvd5J/FRL05GfnbUogZpyfKJ+OmHvx2mg/gM+aGq8lHws6NWzw9T3kLpOOF+Nx1wnpXK/clUhMJPzt91fuFBll7e0I28jsYT6CVLJlAWjLpvRFpcPlYdjkORPROnossTFMbBUcu2YOjw6yNPMhH44VGLYV1Cjlpk4SYUUXl3ECfiIo4yWf2y8R6UIJSKCw6IEFl2+FhN9JBPglB0hR/JyahxQCWEzkQ3Gxy1XJdBk1z0BzBW23R1a0EcJ92T8zTjIzT9D09iGI7JJNDn+orqqxTGBR1aWN2av1LN8NMTnmVAS4r8Kb8ErJ+Ibunidfo0Di+LxrGIsmN/nE0SxSnNi06yc9kB9JXIAbejfsjzMgKQD3gw7MTTEw0C1U1/OB+rR9SAOv3jOIwTlEh4LaiQf3f0t6ojRzqrhVUdrGrkbchGZ/dNj6ga6rujv1WtUER6aPnMzWLWJi66ESmSBRJGEMXZ5EO/w4HaFppEIntTXIAIDPOpmvqBf0xGHdCBeSGYtWleV5uHjxfE53DIk4iHWkgi4HYST1J0KoVR96UG0uWBGMGlvpFD4ku6/gUD0KVd3k94MXCtQRowdRfPC+JC8eHjYhByDCmMNcjAFMB8MjmXp/yMi7Qnou4k6sOMuygv+fbXIIEiqckZaJGEoOtn8IS0CjzkIw46lCl5UeI2w+1ta2YwYqX7hZbn9y8ZgNu1sqOkzA/HAx9KCvUI/XOwBPPTVe29jbtlEHpiyru65LInhUyKpketA2xQG9RPmkLHbaELbRNVLa02UuHV4zTnVM/1ilk//WRW510WqDnKb2Pm1KAsn7hNmk08iEcjH0Qj8kcw8WORBCFXsxXSiiMfS9aRb2oY9AwnWXEr0M3ljVRwBKkUwQykoFU2CNkA9C7iaaqsVjZvn5aL2BpI481xXmtw4CR4dApDi5MUoSnOXe851h2ii6JkaiqhlPfMvOjCnOMGnHEipqhd1G8Xtdrg4w5MbDDTsfHsA+No07yPNpM/pLi3LVlXCrwe3K+RnkCqDVo6BhPUE8Fq3v+pBL5Me1Bhu72a7bLWtLewFZa5vcr4EVheZQ7Be49lA9K2jznv5iAXnKIxNKnc65xszVkVcPDMJtR2TeaZnoutXNMYocR2GLYwdhzbtLfRuzcgdwvwt7XWva2w4K9mQYrwDGR/Q5VrbN220LmyAbdshxLLY55HCHW1VaOG7S4wAFAf2FAM1SxiM8dizPKa6PCCmogRBKWByFbT9DrKICoAhCqqorjyK1w9y01nE8V5doXiLGHDZooO+dXRX9dAyG5kf6WzvWWzUXKqZH7uzFGTJ4ZJF2V0c8Vfz/AeN5Gf440QJJjNqbNE8tYNLwGnZgL4HiOe57jEVPgzw3IJo5R6ruW6mHjbwH/C+7J8gYDjZaa3s5qHNG+tQLqz3PpamwQ8EE51hUYWqr/Law9uwDITA5Aug65UgZEFgqRdBsWRZgG7joUZYxQ7KwzzIhCrDLPiIpQiMzPEAEY16xpyPpbp7rvoQ+JHqVz2KMfOGwpEuyIQ3WYC0d3/CHje/pmWZ9qW51ELKLcdnVtBrElsC7u260CSD4Yxt39SLynxsG3ZngN/lfx/Q29826Q/rZDOm5HO7xLpoNLMcjB2MbU8y/G0zbUNEzvUtR1Z4tjKwUpNJ6ZhugxoZ9gB4l3IQu846e1lpPeakd5bTjrbO9Ih7nZMymzLhHjaZcyxXUW7Y1CHMIfaxHOpZ2Ptag9MMPAOOAJsEQ8MgVcslq4127vFer8Z6/27pOq7ZP3WdZ1PxwmMRMZKOawf+DQDawY3jloPfp3E2ZOTLOHBkKPjt+hMJF3EYQj8gotgEPEMPfi7iZ88PIUG3hjoNE76vM87PHqkn1X9lYUhgw5a5d72NrJLMz/JVO6BpCiAfTe9uY+bR9p4bvUJPtZ8qL08oevEccj9aDbPgcIBup/wCqnbrCWvP/93vV4KlMJMWR66etZKJfHHigxVdhIMEpFlyPzxqlQuPO/H0bJcAvmkzsJ8FNBeMDR1tc4nU1cM1A961BpdlfrpTgvUZs1dryGql09R5ce06HwqPk+R2UREl0tXJcn6tI+T3cNM6/Zt8koeg/vF47prmcyuX8zcb++6ksnRveKxPiM6WJIS3eWMqN6BvS3WPpRfOl7mwIiuFnwiuuKocGC+3jZs7MLIrUkRJqUDETfgwyRqezjbjZVmie07qN/I2dU+zm2Yvlt0Yrsg8mDJImD9GuDB3VoEXE2lf8+ovM+BZW2yT0rJfj+UiX0aDHg0DEWfo4cfuAgPHj1LuFCrACrfP+NJl0eoz3uTSP6Qh6ZGfjIUPMnWT/zJtol/jUzsKvHHXumTC4VDNkv1xV6l+noZw7TJSg2py/XJFbm+OnFZHygdL8v0v/93dRykjgXOMIHaC1BigzkOtUErwRZTy3To1rbnlyrqxXFQjbuyRDPk6ZqyRlcYC7pgLPwkuNyttYvCMIzP3vNeyKcK6Yos8REMSZ7ffT87/7pQpxl3s70exV114/f750bcfb6SO3bT3LE1uVvlsfeTu3ZJ72q4+9KIuy+L3IER9CgYExtYYyZ1ipPN18tdkbsWPr90AsO6t+Qdl7LLGvJ+b0Te74vkWZCOe45lQ4YB2Top4pj/c3cld/VBFS0FVV3B0TCO+gAgRHMRegrNp2ciGvJwjXhKbbCcTE5QGoehfLxbbiL1sws05FGUP+hHZ1y20mALhm4bidWwvbNIzJ4drlsafNVywkqcPANOTiajEQc4U5TEqa/A6yff/pJA/ltDizpcoGNNEk/6opMhAc8kchMMar3nwSCb1UYP5Zs6L5NvX7/9xpGHHz1Rz/mTYICAkggakm8hBYO4A8/IvbT1GWLbMhTfIEP5MgaWSbG3sGG2TrhcPqj3/LbfKriuk3qWQUhxNghSy/mPeX0nQ1/cP7ioQbY6Pfo+zvxs0aU+1y714OH3z4+0W31RcavPH/jjOH2y2rcuSGv+yGYk7OJ0smW4jLmMmNTzbJc4uXYSA1OCIU6zLLhve3QbhOtilgIJBfMLDfHzauTyR6PI5Y8bSPdqTOWqlGHnkYt1E1FnvY7MUwia8uUqTdlYX/ZOa2zDcq/H+qzQjToNuYSwrCdfG+nJ1yvTs+1T6xo9WbUkez/0pOYVpOcFgYucDVdTVnoFaXinXkEyi1dI9Zt8oCWOXCK9rn2MRvC/0PBXLFCJirABFeGdokK/OKkpKcWU2qEzg2GbzUeau6ao7l2dYYWQl02cxMsNHYNJtNtW3zuNazeIarFh08Vdhet9QyqsoP6qCeqv7g/qrkGvKZeo8+YvSx78VdV3/9nId/+56LuZ4ZiEuq7nYupCqH6V555/9/2G1gKaWP6S0zbxel676Vn1l8uccrSai8X97ehGdrd3tzozv7Nd9g/5W6ozD25Sw3IIvn5XcWvvK+SRQVUhx81kYHxvZKAIFqhhVmRB2kS4z/b6KN7qffV4n/bVaQ41bn6GnlX21euXtK3Skvbo29d+aCD932tS3RT/cf01ZmuzN+p3s4zMDFpaItXnSS0D06Uh0/py8ss+yUlxxIjYjeWEVuTk8fx/OJLXxX81++l/UEsHCEUlU/byCgAAB00AAFBLAQIUABQACAAIACG+7jxFJVP28goAAAdNAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAALAsAAAAA" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
+
--[[Benutzer:&quot;chris&quot;07|&quot;chris&quot;07]] 22:10, 14. Jul. 2010 (UTC)
+
  
 
===Variante 2===
 
===Variante 2===

Version vom 19. Juli 2010, 15:03 Uhr

Inhaltsverzeichnis

Ein wenig Didaktik

Hier geben Ihnen die Didaktikspezialisten Tipps zum Satz des Thales

Satzfindung

Funktionale Betrachtung

Variante1

Variante2

Variante 3

--"chris"07 21:47, 15. Jul. 2010 (UTC)

induktive Satzfindung

Sehnen verschieben

--Mirasol 13:52, 9. Jul. 2010 (UTC) Bewege den Punkt A, um die Sehne zu verschieben!

Variante a

--"chris"07 21:12, 14. Jul. 2010 (UTC)

Variante b

--"chris"07 21:12, 14. Jul. 2010 (UTC)

Beweisfindung

Variante 1


Variante 2

--"chris"07 17:07, 15. Jul. 2010 (UTC)

weitere Variante


induktive Satzfindung einer Umkehrung

(vgl. Idee von Frau "komplizierter Doppelname" in einer alten Klausur)
Kann bitte jemand den Satz auf richtige Formulierung kontrollieren?!
Welche speziellen Art der Einführung von Sätzen im induktiven Bereich lässt sich dieses Beispiel zuordnen?