Die Geradenspiegelung und ihre Eigenschaften SoSe 20: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „Im Folgenden werden wir uns mit Geometrie in der Ebene beschäftigen. Speziell betrachten wir so genannte Abbildungen der Ebene auf sich selbst und hier wieder…“) |
(→Konstruktion der Geradenspiegelung mit Zirkel und Lineal) |
||
Zeile 17: | Zeile 17: | ||
Erinnern Sie sich an Ihre Schulzeit zurück: Wie haben Sie in der Schule mit Zirkel und Lineal eine Geradenspiegelung angefertigt? <br /> | Erinnern Sie sich an Ihre Schulzeit zurück: Wie haben Sie in der Schule mit Zirkel und Lineal eine Geradenspiegelung angefertigt? <br /> | ||
Ihre Beschreibung (gerne auch als Bild):<br /><br /> | Ihre Beschreibung (gerne auch als Bild):<br /><br /> | ||
+ | |||
+ | [[Datei:Konstruktion Geradenspiegelung mit Zirkel und Lineal (ohne Geodreieck).jpg|thumb|grün ist gegeben, die Zahlen geben an, in welcher Reihenfolge konstruiert wurde]] | ||
+ | --[[Benutzer:Kohlhoffj|tgksope]] ([[Benutzer Diskussion:Kohlhoffj|Diskussion]]) 12:17, 17. Jun. 2020 (CEST) | ||
==== Definition V.4 : (Fixpunkte)==== | ==== Definition V.4 : (Fixpunkte)==== |
Version vom 17. Juni 2020, 11:17 Uhr
Im Folgenden werden wir uns mit Geometrie in der Ebene beschäftigen. Speziell betrachten wir so genannte Abbildungen der Ebene auf sich selbst und hier wiederum nur ganz bestimmte Abbildungen, die so genannten Kongruenzabbildungen.
Definition V.1 : (Abbildung )
- Eine Zuordnung, die jedem Punkt P der Ebene eindeutig einen Bildpunkt P' zuordnet, nennt man Abbildung.
- Schreibweise:
- Eine Zuordnung, die jedem Punkt P der Ebene eindeutig einen Bildpunkt P' zuordnet, nennt man Abbildung.
Definition V.2 : (involutorische Abbildung)
- Eine Abbildung , die bei zweifacher Ausführung () wieder zum Ursprungsbild führt (identische Abbildung), nennt man involutorisch oder involutorische Abbildung.
Definition V.3 : (Geraden- oder Achsenspiegelung )
- Gegeben sei eine Gerade g in der Ebene. Die Geraden- oder Achsenspiegelung ist die Abbildung der Ebene auf sich selbst, die nach folgender Abbildungsvorschrift jeden Punkt P seinem Bildpunkt P' zuordnet.
- Gegeben sei eine Gerade g in der Ebene. Die Geraden- oder Achsenspiegelung ist die Abbildung der Ebene auf sich selbst, die nach folgender Abbildungsvorschrift jeden Punkt P seinem Bildpunkt P' zuordnet.
- mit
Nutzen Sie die folgende GeoGebra-Applikation um den Punkt P an der Geraden g zu spiegeln. Verschieben den Punkt P bzw. die Gerade g um die Definition der Geradenspiegelung nachzuvollziehen. Falls nichts angezeigt wird, können Sie mit folgendem Link den Servercache leeren.
Konstruktion der Geradenspiegelung mit Zirkel und Lineal
Erinnern Sie sich an Ihre Schulzeit zurück: Wie haben Sie in der Schule mit Zirkel und Lineal eine Geradenspiegelung angefertigt?
Ihre Beschreibung (gerne auch als Bild):
--tgksope (Diskussion) 12:17, 17. Jun. 2020 (CEST)
Definition V.4 : (Fixpunkte)
- Wenn bei einer Abbildung ein Bildpunkt P' mit seinem Urbild P zusammenfällt (P wird auf sich selbst abgebildet), dann heißt P Fixpunkt der Abbildung .
- formal:
- Wenn bei einer Abbildung ein Bildpunkt P' mit seinem Urbild P zusammenfällt (P wird auf sich selbst abgebildet), dann heißt P Fixpunkt der Abbildung .
Aufgabe: Welche Punkte sind bei der Geradenspiegelung Fixpunkte?
Definition V.5 : (Fixgerade)
- Wenn bei einer Abbildung eine Bildgerade g' mit ihrem Urbild g zusammenfällt, dann heißt g Fixgerade der Abbildung .
- Wenn bei einer Abbildung eine Bildgerade g' mit ihrem Urbild g zusammenfällt, dann heißt g Fixgerade der Abbildung .
Aufgabe: Gibt es Fixgeraden bei der Geradenspiegelung und welche sind dies ggf.?
Definition V.6 : (Fixpunktgerade)
- Wenn jeder Punkt P einer Fixgeraden g auf sich selbst abgebildet wird, so ist die Fixgerade g auch Fixpunktgerade.
- Wenn jeder Punkt P einer Fixgeraden g auf sich selbst abgebildet wird, so ist die Fixgerade g auch Fixpunktgerade.
Aufgabe: Gibt es Fixpunktgeraden bei der Geradenspiegelung und welche sind dies ggf.?
Eigenschaften einer Geradenspiegelung
- abstandserhaltend: Der Abstand zweier Bildpunkte und ist gleich dem Abstand der beiden Urbilder A und B.
- winkelmaßerhaltend: hier gilt analog:
diese beiden Eigenschaften lassen sich axiomatisch begründen, was wir hier aber nicht weiter vertiefen wollen. Alle weiteren Eigenschaften lassen sich aus der Abstands- und Winkelmaßerhaltung ableiten.
Satz V.1 :
Die Geradenspiegelung ist eine involutorische Abbildung, d. h. für alle Punkte A, B der Ebene gilt:
Beweis:
Satz V.2 (Streckentreue der Geradenspiegelung ):
Bei der Geradenspiegelung wird eine Strecke auf eine Strecke abgebildet. Dabei gilt: und .
Beweis:
Satz V.3 (Längentreue der Geradenspiegelung ):
Die Länge der Strecke , die bei der Geradenspiegelung entsteht ist gleich der Länge der Strecke .
Beweis:
Satz V.4 (Halbgeradentreue der Geradenspiegelung ):
Bei der Geradenspiegelung wird eine Halbgerade auf eine Halbgerade abgebildet. Dabei gilt: und .
Beweis:
Satz V.5 (Geradentreue der Geradenspiegelung ):
Bei der Geradenspiegelung wird eine Gerade auf eine Gerade abgebildet. Dabei gilt: und .
Beweis:
Satz V.6 (Winkeltreue der Geradenspiegelung ):
Bei der Geradenspiegelung wird ein Winkel auf einen Winkel abgebildet. Dabei stimmen die Winkelmaße beider Winkel überein.
Beweis:
Satz V.7 (Parallelentreue der Geradenspiegelung ):
Bei der Geradenspiegelung werden zueinander parallele Geraden und auf zwei zueinander parallele Geraden und abgebildet.
Beweis: