Der Basiswinkelsatz WS 21 22: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Definition VIII.1 : (gleichschenkliges Dreieck))
(Definition VIII.1 : (gleichschenkliges Dreieck))
Zeile 2: Zeile 2:
 
=== Gleichschenklige Dreiecke ===
 
=== Gleichschenklige Dreiecke ===
 
===== Definition VIII.1 : (gleichschenkliges Dreieck) =====
 
===== Definition VIII.1 : (gleichschenkliges Dreieck) =====
Ein Dreieck mit zwei kongruenten Seiten heißt gleichschenkliges Dreieck.
+
Ein Dreieck mit zwei kongruenten Seiten heißt gleichschenkliges Dreieck. Die Seiten heißen Schenkel, die dritte Seite heißt Basis des Dreiecks. Die Innenwinkel an der Basis heißen Basiswinkel.
  
 
=== Der Basiswinkelsatz ===
 
=== Der Basiswinkelsatz ===

Version vom 9. Dezember 2021, 14:41 Uhr

Inhaltsverzeichnis

Der Basiswinkelsatz

Gleichschenklige Dreiecke

Definition VIII.1 : (gleichschenkliges Dreieck)

Ein Dreieck mit zwei kongruenten Seiten heißt gleichschenkliges Dreieck. Die Seiten heißen Schenkel, die dritte Seite heißt Basis des Dreiecks. Die Innenwinkel an der Basis heißen Basiswinkel.

Der Basiswinkelsatz

Satz VIII.1: (Basiswinkelsatz)
In jedem gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.

Beweis:
Voraussetzung: Dreieck ist gleichschenklig

Behauptung: Basiswinkel sind kongruent

Nr. Skizze Beweisschritt Begründung
(1) Gleichschenklig 2.png \left| AC \right|=\left| BC \right|
(2)

Gleichschenklig 3.png
C\in m mit m ist Mittelsenkrechte von \overline{AB}
(3)


B=S_{m}(A)
(4)


C=S_{m}(C)
(5)


M=S_{m}(M)
(6a)


 S_{m} (\angle MAC ) = \angle MBC
(6b)


\angle MAC \tilde {=} \angle MBC