Lösung von Aufgabe 4.2 (WS 23 24): Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „'''Satz: In einem Dreieck <math>\overline{ABC} </math> mit |AC|< |BC| < |AB| sind die Winkel α und β nicht kongruent zueinander. '''<br /><br /> '''a) Wel…“) |
|||
Zeile 15: | Zeile 15: | ||
Bew: Nach Umkehrung des Basiswinkelsatzes gilt: Wenn |α|= |β| dann gilt |AC|= |BC|. Die Kontraposition der Umkehrung lautet also: Wenn |AC| ≠ |BC| dann gilt |α| ≠ |β|. Da die Kontraposition gleichwertig ist, kann man auch diese beweisen. Da nach Voraussetzung gilt: |AC|< |BC|, d.h. |AC| ≠ |BC|, kann nach Kontraposition der Umkehrung des Basiswinkelsatzes direkt gefolgert werden: |α| ≠ |β|. Damit ist der Satz bewiesen.<br /><br /> | Bew: Nach Umkehrung des Basiswinkelsatzes gilt: Wenn |α|= |β| dann gilt |AC|= |BC|. Die Kontraposition der Umkehrung lautet also: Wenn |AC| ≠ |BC| dann gilt |α| ≠ |β|. Da die Kontraposition gleichwertig ist, kann man auch diese beweisen. Da nach Voraussetzung gilt: |AC|< |BC|, d.h. |AC| ≠ |BC|, kann nach Kontraposition der Umkehrung des Basiswinkelsatzes direkt gefolgert werden: |α| ≠ |β|. Damit ist der Satz bewiesen.<br /><br /> | ||
b) '''Beweisen Sie den Satz indirekt mit Widerspruch.'''<br /> | b) '''Beweisen Sie den Satz indirekt mit Widerspruch.'''<br /> | ||
+ | |||
+ | |||
+ | a) | ||
+ | Beweis 1 ist nicht korrekt, da die Voraussetzung des Basiswinkelsatzes nicht |AC| ≠|BC| ist, sondern =. Hier wurde die Kontraposition der Umkehrung verwendet. | ||
+ | |||
+ | Beweis 2) korrekt --[[Benutzer:Capricorn|Capricorn]] ([[Benutzer Diskussion:Capricorn|Diskussion]]) 22:03, 6. Nov. 2023 (CET) | ||
+ | |||
+ | |||
Version vom 6. November 2023, 22:03 Uhr
Satz: In einem Dreieck mit |AC|< |BC| < |AB| sind die Winkel α und β nicht kongruent zueinander.
a) Welcher Beweis ist korrekt? Begründen Sie ausführlich! (Der Basiswinkelsatz und seine Umkehrung seien bereits bewiesen.)
Beweis 1)
Sei ein Dreieck.
Vor: |AC|< |BC| < |AB|.
Beh: |α| ≠ |β|
Bew: Da nach Voraussetzung |AC| ≠ |BC| gilt nach dem Basiswinkelsatz |α| ≠ |β|. Damit ist der Satz bewiesen.
Beweis 2)
Sei ein Dreieck.
Vor: |AC|< |BC| < |AB|.
Beh: |α| ≠ |β|
Bew: Nach Umkehrung des Basiswinkelsatzes gilt: Wenn |α|= |β| dann gilt |AC|= |BC|. Die Kontraposition der Umkehrung lautet also: Wenn |AC| ≠ |BC| dann gilt |α| ≠ |β|. Da die Kontraposition gleichwertig ist, kann man auch diese beweisen. Da nach Voraussetzung gilt: |AC|< |BC|, d.h. |AC| ≠ |BC|, kann nach Kontraposition der Umkehrung des Basiswinkelsatzes direkt gefolgert werden: |α| ≠ |β|. Damit ist der Satz bewiesen.
b) Beweisen Sie den Satz indirekt mit Widerspruch.
a)
Beweis 1 ist nicht korrekt, da die Voraussetzung des Basiswinkelsatzes nicht |AC| ≠|BC| ist, sondern =. Hier wurde die Kontraposition der Umkehrung verwendet.
Beweis 2) korrekt --Capricorn (Diskussion) 22:03, 6. Nov. 2023 (CET)