Axiome WS10/11: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(Die Seite wurde neu angelegt: '''AXIOM I/0''' Geraden sind Punktmengen. '''AXIOM I/1''' (Axiom von der Geraden) Zu zwei beliebigen verschiedenen Punkten gibt es genau eine Gerade, die die beide...) |
|||
Zeile 4: | Zeile 4: | ||
− | '''AXIOM I/1 | + | '''AXIOM I/1 (Axiom von der Geraden)''' |
Zu zwei beliebigen verschiedenen Punkten gibt es genau eine Gerade, die die beiden Punkte enthält. | Zu zwei beliebigen verschiedenen Punkten gibt es genau eine Gerade, die die beiden Punkte enthält. |
Version vom 12. November 2010, 00:03 Uhr
AXIOM I/0
Geraden sind Punktmengen.
AXIOM I/1 (Axiom von der Geraden)
Zu zwei beliebigen verschiedenen Punkten gibt es genau eine Gerade, die die beiden Punkte enthält.
weitere Bezeichnungsmöglichkeit von Geraden
Eine Gerade g, die durch zwei verschiedene Punkte A und B eindeutig bestimmt ist wird auch mit AB bezeichnet.
AXIOM I/2
Zu jeder Geraden gibt es wenigstens zwei Punkte, die dieser Geraden angehören.
AXIOM I/3
Es gibt wenigstens 3 Punkte, die nicht kollinear sind.