Axiome WS10/11: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: '''AXIOM I/0''' Geraden sind Punktmengen. '''AXIOM I/1''' (Axiom von der Geraden) Zu zwei beliebigen verschiedenen Punkten gibt es genau eine Gerade, die die beide...)
 
Zeile 4: Zeile 4:
  
  
'''AXIOM I/1''' (Axiom von der Geraden)
+
'''AXIOM I/1 (Axiom von der Geraden)'''
  
 
Zu zwei beliebigen verschiedenen Punkten gibt es genau eine Gerade, die die beiden Punkte enthält.  
 
Zu zwei beliebigen verschiedenen Punkten gibt es genau eine Gerade, die die beiden Punkte enthält.  

Version vom 12. November 2010, 00:03 Uhr

AXIOM I/0

Geraden sind Punktmengen.


AXIOM I/1 (Axiom von der Geraden)

Zu zwei beliebigen verschiedenen Punkten gibt es genau eine Gerade, die die beiden Punkte enthält.

weitere Bezeichnungsmöglichkeit von Geraden

Eine Gerade g, die durch zwei verschiedene Punkte A und B eindeutig bestimmt ist wird auch mit AB bezeichnet.


AXIOM I/2

Zu jeder Geraden gibt es wenigstens zwei Punkte, die dieser Geraden angehören.


AXIOM I/3

Es gibt wenigstens 3 Punkte, die nicht kollinear sind.