Lösung von Aufg. 10.2: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
| Zeile 14: | Zeile 14: | ||
... wenn es in <math>\epsilon</math> zwei voneinander verschiedene Geraden gibt, die senkrecht zu g stehen. --[[Benutzer:Jp1234|jp1234]] 23:35, 21. Dez. 2010 (UTC)<br /> | ... wenn es in <math>\epsilon</math> zwei voneinander verschiedene Geraden gibt, die senkrecht zu g stehen. --[[Benutzer:Jp1234|jp1234]] 23:35, 21. Dez. 2010 (UTC)<br /> | ||
| − | wenn die beiden Geraden ''f'' und ''h'' in der Ebene parallel zueinander stehen, dann gebe es eine dritte Gerade ''g'' in der Ebene, die senkrecht auf die beiden Geraden ''f'' und ''h'' stehen würde und nach Ihrer Definition damit senkrecht auf der Ebene stünde. Da unsere Gerade ''g'' aber in der Ebene liegt, stimmt dies offensichtlich nicht!--[[Benutzer:Schnirch|Schnirch]] 15:16, 19. Jan. 2011 (UTC) | + | wenn die beiden Geraden ''f'' und ''h'' in der Ebene parallel zueinander stehen, dann gebe es eine dritte Gerade ''g'' in der Ebene,<br />die senkrecht auf die beiden Geraden ''f'' und ''h'' stehen würde und nach Ihrer Definition damit senkrecht auf der Ebene stünde.<br />Da unsere Gerade ''g'' aber in der Ebene liegt, stimmt dies offensichtlich nicht!--[[Benutzer:Schnirch|Schnirch]] 15:16, 19. Jan. 2011 (UTC) |
[[Category:Einführung_Geometrie]] | [[Category:Einführung_Geometrie]] | ||
Version vom 19. Januar 2011, 16:17 Uhr
Definition V.9 : (noch mehr Senkrecht)
- Eine Gerade
und eine Strecke
stehen senkrecht aufeinander, wenn die
und die Gerade
senkrecht aufeinander stehen.
- Eine Gerade
Ergänzen Sie:
- Eine Strecke
und eine Strecke
stehen senkrecht aufeinander, wenn ... .
- Eine Strecke
- Eine Gerade
und eine Ebene
stehen senkrecht aueinander, wenn es in
... .
- Eine Gerade
Eine Strecke
und eine Strecke
stehen senkrecht aufeinander, wenn auch die Geraden
und
senkrecht aufeinander stehen.
die Def. ist korrekt, das Wörtchen "auch" können Sie allerdings weglassen.--Schnirch 15:16, 19. Jan. 2011 (UTC)
Eine Gerade g und eine Ebene
stehen senkrecht aufeinander, wenn es in
zwei Geraden gibt, die sich schneiden und jeweils senkrecht zu g stehen.
--Engel82 15:49, 15. Dez. 2010 (UTC)
diese Definition von Engel82 ist korrekt!
... wenn es in
zwei voneinander verschiedene Geraden gibt, die senkrecht zu g stehen. --jp1234 23:35, 21. Dez. 2010 (UTC)
wenn die beiden Geraden f und h in der Ebene parallel zueinander stehen, dann gebe es eine dritte Gerade g in der Ebene,
die senkrecht auf die beiden Geraden f und h stehen würde und nach Ihrer Definition damit senkrecht auf der Ebene stünde.
Da unsere Gerade g aber in der Ebene liegt, stimmt dies offensichtlich nicht!--Schnirch 15:16, 19. Jan. 2011 (UTC)

