Diskussion:Lösung von Aufgabe 3.3 (SoSe11): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „==Hinweis zur Lösung der Aufgabe== --~~~~ Es sei <math>\ w_1</math> die Winkelhalbierende des Winkels <math>\angle{ASB}</math> entsprechend der Definition:<br />…“)
 
(Hinweis zur Lösung der Aufgabe)
Zeile 3: Zeile 3:
 
Es sei <math>\ w_1</math> die Winkelhalbierende des Winkels <math>\angle{ASB}</math> entsprechend der Definition:<br />
 
Es sei <math>\ w_1</math> die Winkelhalbierende des Winkels <math>\angle{ASB}</math> entsprechend der Definition:<br />
 
# <math>\ w_1</math> ist ein Strahl mit dem Anfangspunkt <math>\ S</math> aus dem Inneren von <math>\angle{ASB}</math>.
 
# <math>\ w_1</math> ist ein Strahl mit dem Anfangspunkt <math>\ S</math> aus dem Inneren von <math>\angle{ASB}</math>.
# Die beiden Winel, die den Strahl <math>\ w_1</math als gemeinsamen Schenkel haben und deren jeweils anderer Schenkel der Strahl <math>\ SA^+</math> bzw. <math>\ SB^+</math> sind, sind kongruent (gleich groß) zueinder.
+
# Die beiden Winel, die den Strahl <math>\ w_1</math> als gemeinsamen Schenkel haben und deren jeweils anderer Schenkel der Strahl <math>\ SA^+</math> bzw. <math>\ SB^+</math> sind, sind kongruent (gleich groß) zueinder.
  
 
Im weiteren gehen wir wieder von dem Winkel <math>\angle{ASB}</math> aus und konstruieren den Strahl <math>\ w_2</math> entsprechend der Konstruktionsvorschrift.
 
Im weiteren gehen wir wieder von dem Winkel <math>\angle{ASB}</math> aus und konstruieren den Strahl <math>\ w_2</math> entsprechend der Konstruktionsvorschrift.
Zeile 12: Zeile 12:
 
zu zeigen:
 
zu zeigen:
 
# <math>\ w_2</math> ist ein Strahl mit dem Anfangspunkt <math>\ S</math> aus dem Inneren von <math>\angle{ASB}</math>.
 
# <math>\ w_2</math> ist ein Strahl mit dem Anfangspunkt <math>\ S</math> aus dem Inneren von <math>\angle{ASB}</math>.
# Die beiden Winel, die den Strahl <math>\ w_2</math als gemeinsamen Schenkel haben und deren jeweils anderer Schenkel der Strahl <math>\ SA^+</math> bzw. <math>\ SB^+</math> sind, sind kongruent (gleich groß) zueinder.
+
# Die beiden Winel, die den Strahl <math>\ w_2</math> als gemeinsamen Schenkel haben und deren jeweils anderer Schenkel der Strahl <math>\ SA^+</math> bzw. <math>\ SB^+</math> sind, sind kongruent (gleich groß) zueinder.
  
 
1. ist entsprechend der Konstruktionsvorschrift trivial.
 
1. ist entsprechend der Konstruktionsvorschrift trivial.
 
<br />
 
<br />
 
Für den Nachweis von 2. helfen die grundlgende Sätze aus der Schulgeometrie.
 
Für den Nachweis von 2. helfen die grundlgende Sätze aus der Schulgeometrie.

Version vom 27. April 2011, 22:50 Uhr

Hinweis zur Lösung der Aufgabe

--*m.g.* 23:50, 27. Apr. 2011 (CEST) Es sei \ w_1 die Winkelhalbierende des Winkels \angle{ASB} entsprechend der Definition:

  1. \ w_1 ist ein Strahl mit dem Anfangspunkt \ S aus dem Inneren von \angle{ASB}.
  2. Die beiden Winel, die den Strahl \ w_1 als gemeinsamen Schenkel haben und deren jeweils anderer Schenkel der Strahl \ SA^+ bzw. \ SB^+ sind, sind kongruent (gleich groß) zueinder.

Im weiteren gehen wir wieder von dem Winkel \angle{ASB} aus und konstruieren den Strahl \ w_2 entsprechend der Konstruktionsvorschrift.

Behauptung: \ w_2 ist auch Winkelhalbierende von \angle{ASB} entsprechend der ersten Definition.

Beweis:
zu zeigen:

  1. \ w_2 ist ein Strahl mit dem Anfangspunkt \ S aus dem Inneren von \angle{ASB}.
  2. Die beiden Winel, die den Strahl \ w_2 als gemeinsamen Schenkel haben und deren jeweils anderer Schenkel der Strahl \ SA^+ bzw. \ SB^+ sind, sind kongruent (gleich groß) zueinder.

1. ist entsprechend der Konstruktionsvorschrift trivial.
Für den Nachweis von 2. helfen die grundlgende Sätze aus der Schulgeometrie.