Definition der Woche 11 (SoSe 11): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „Definieren Sie den Begriff ''Oval''.<br /><br /> <ggb_applet width="549" height="369" version="3.2" ggbBase64="UEsDBBQACAAIAK+F2j4AAAAAAAAAAAAAAAAMAAAAZ2VvZ2Vicm…“)
 
Zeile 1: Zeile 1:
Definieren Sie den Begriff ''Oval''.<br /><br />
+
Definieren Sie, was man unter einem  ''Oval'' versteht:<br /><br />
 
<ggb_applet width="549" height="369"  version="3.2" ggbBase64="UEsDBBQACAAIAK+F2j4AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vjdb9s2EH9e/wpCD3tzI/kjSTErhdwBQ4CuHeAuD3kpaOlic6FIjaQSO3/9jh+yZTv27KzA3KBPEo+n493vd3c8aPh+XnLyAEozKdIoeRtHBEQuCyamaVSbu85l9P7qzXAKcgoTRcmdVCU1adR7242svGZXb34a6pl8JJQ7lRsGj2l0R7mGiOhKAS30DMCsyWk9Z5xRtfg8+Qtyo1cb3si1qGo8xagaZXlZfGS6WZ65AyvOzK/sgRWgCJd5Gp0P0HV8uwFlWE55GvVjL+mmUXdjE0U9uzuTij1JYaz6yjinE+AIwNgsOBDyYHd7fusOlQnR7AkQrK6VDc8cBkOoc84KRoWN07mISoQ8ssLM0mjQf4enAZvOLHbnF95aLqUqxgttoCTzW1ASjV6cWw4WYXV5YVcaXcYDB7Hbaq+cGXgYgzHosCZ0Dissp4oVa4trPZJ8JaokE+YDrUytHN29IHJxpxGepazDmZhyCLIusjGD/H4i52MPQs+b/rKo3CfOocn0g+RSEWWRH6BCeE780+lYT5dasdOJnUawYY0u95N3XafhnhP/9FQx4V0LkSdN1EncHMM0sQILI2bpMnhHchpFpBbMfGwWmB33IdTEf/CpLidYHu38WNpMvpXN4dlG+gzvQQngPkkEclvLWvtM9Gc5RwrIWYlLvxEgoZauP9EBLy1gqqBx3BeXB8ztxu1E3BAPzxonrA8afc0NdgmMx9hYbBEbLKA0+o2B7RcRKaixG7YaOJSApWJcWrisWsKTRcuWIV31b+K3Qhr3n80Rl02UVzOKkqYMOF1gM2iH5ez9Lov1YKlA0FwkWHiVNWBpqQA8oyZkMqnQoKuLFuIOKE3m/liySKNO1748+d7pdHwN2epfdQ4k2CPyL9iMXhU2R0OTy7KkoiCClnjOGEqWM5VzcKgweycQGluUCE1sInkgatNs5N5gMLOFNaYxyyuqVnjn0XoXMTMsVgFau1Zn2k1tDyktEHaxEr+ck4O8w6sFxAP6JpUmZB6Hu3wRBzaeGskcget4gpIgekpaFCH9is1J1uhnjVaGl2an7956wWjWb2xlg/DmnflbeIe1b3usxOs6Z2bJF7fJcy0MNkFwTWW7t90DVPZS+Sy+KCq0nTu8TqtnHps3mc+b0VbeFMfmTfHCvPEDzY+0OY202deJb78mr6oXx9/ymrr92n0V4PRfCs56w7lxBbTRbGwCuXZjwdpsOPX+huMrcoll/R3cUrtBXZk6JIDWKBraQI6NFzSOxiFCg+s/LD8E5pXHeS87rhFwHE2fnyLqLXJGP9NK6l/2U7Qxt4VP/t+i2ObgP05gu6DLdkGXHQ9ddqLQHT/YHzq9hoD9DLsCbH2SPQTIZ+bZFpg/ppPDppOkuz2d9E9gOtlMp6mVP9/DRjuyiO7PHx1sNpTT08+b7cGmH8q0c3nUPXOSdGb7m8LkODon3zOdJ87mWfuXmPsLHP6QX/0DUEsHCDKQhH1QBAAAUxcAAFBLAQIUABQACAAIAK+F2j4ykIR9UAQAAFMXAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAigQAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 
<ggb_applet width="549" height="369"  version="3.2" ggbBase64="UEsDBBQACAAIAK+F2j4AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vjdb9s2EH9e/wpCD3tzI/kjSTErhdwBQ4CuHeAuD3kpaOlic6FIjaQSO3/9jh+yZTv27KzA3KBPEo+n493vd3c8aPh+XnLyAEozKdIoeRtHBEQuCyamaVSbu85l9P7qzXAKcgoTRcmdVCU1adR7242svGZXb34a6pl8JJQ7lRsGj2l0R7mGiOhKAS30DMCsyWk9Z5xRtfg8+Qtyo1cb3si1qGo8xagaZXlZfGS6WZ65AyvOzK/sgRWgCJd5Gp0P0HV8uwFlWE55GvVjL+mmUXdjE0U9uzuTij1JYaz6yjinE+AIwNgsOBDyYHd7fusOlQnR7AkQrK6VDc8cBkOoc84KRoWN07mISoQ8ssLM0mjQf4enAZvOLHbnF95aLqUqxgttoCTzW1ASjV6cWw4WYXV5YVcaXcYDB7Hbaq+cGXgYgzHosCZ0Dissp4oVa4trPZJ8JaokE+YDrUytHN29IHJxpxGepazDmZhyCLIusjGD/H4i52MPQs+b/rKo3CfOocn0g+RSEWWRH6BCeE780+lYT5dasdOJnUawYY0u95N3XafhnhP/9FQx4V0LkSdN1EncHMM0sQILI2bpMnhHchpFpBbMfGwWmB33IdTEf/CpLidYHu38WNpMvpXN4dlG+gzvQQngPkkEclvLWvtM9Gc5RwrIWYlLvxEgoZauP9EBLy1gqqBx3BeXB8ztxu1E3BAPzxonrA8afc0NdgmMx9hYbBEbLKA0+o2B7RcRKaixG7YaOJSApWJcWrisWsKTRcuWIV31b+K3Qhr3n80Rl02UVzOKkqYMOF1gM2iH5ez9Lov1YKlA0FwkWHiVNWBpqQA8oyZkMqnQoKuLFuIOKE3m/liySKNO1748+d7pdHwN2epfdQ4k2CPyL9iMXhU2R0OTy7KkoiCClnjOGEqWM5VzcKgweycQGluUCE1sInkgatNs5N5gMLOFNaYxyyuqVnjn0XoXMTMsVgFau1Zn2k1tDyktEHaxEr+ck4O8w6sFxAP6JpUmZB6Hu3wRBzaeGskcget4gpIgekpaFCH9is1J1uhnjVaGl2an7956wWjWb2xlg/DmnflbeIe1b3usxOs6Z2bJF7fJcy0MNkFwTWW7t90DVPZS+Sy+KCq0nTu8TqtnHps3mc+b0VbeFMfmTfHCvPEDzY+0OY202deJb78mr6oXx9/ymrr92n0V4PRfCs56w7lxBbTRbGwCuXZjwdpsOPX+huMrcoll/R3cUrtBXZk6JIDWKBraQI6NFzSOxiFCg+s/LD8E5pXHeS87rhFwHE2fnyLqLXJGP9NK6l/2U7Qxt4VP/t+i2ObgP05gu6DLdkGXHQ9ddqLQHT/YHzq9hoD9DLsCbH2SPQTIZ+bZFpg/ppPDppOkuz2d9E9gOtlMp6mVP9/DRjuyiO7PHx1sNpTT08+b7cGmH8q0c3nUPXOSdGb7m8LkODon3zOdJ87mWfuXmPsLHP6QX/0DUEsHCDKQhH1QBAAAUxcAAFBLAQIUABQACAAIAK+F2j4ykIR9UAQAAFMXAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAigQAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
  
 
<br /><br />
 
<br /><br />
 +
Hinweis: Den Begriff ''Halbkreis'' haben wir bereits definiert.
 +
 +
[[Kategorie:Einführung_Geometrie]]

Version vom 26. Juni 2011, 16:00 Uhr

Definieren Sie, was man unter einem Oval versteht:



Hinweis: Den Begriff Halbkreis haben wir bereits definiert.