Serie 01: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(→Aufgabe 1.2) |
(→Aufgabe 1.3) |
||
Zeile 22: | Zeile 22: | ||
| Abbildung || Umkehrabbildung | | Abbildung || Umkehrabbildung | ||
|- | |- | ||
− | | <math>x^2, x\ge 0</math> || .. | + | | <math>x^2, x\ge 0</math> || Wurzel(x) , x \ge 0 (Sorry für die Schreibweise!) -[[Benutzer:Pipi Langsocke|Pipi Langsocke]] 13:11, 19. Okt. 2011 (CEST) |
|- | |- | ||
− | |<math>\sin (x), 0 \le x \ge | + | |<math>\sin (x), 0 \le x \ge 1</math> ||<math> \arcsin (x) </math> -[[Benutzer:Pipi Langsocke|Pipi Langsocke]] 13:11, 19. Okt. 2011 (CEST) |
|- | |- | ||
− | |Drehung um Z mit Drehwinkel <math> \alpha </math>|| ... | + | |Drehung um Z mit Drehwinkel <math> \alpha </math>|| Drehung um Z mit dem Drehwinkel <math> - \alpha </math>. -[[Benutzer:Pipi Langsocke|Pipi Langsocke]] 13:11, 19. Okt. 2011 (CEST) |
|- | |- | ||
− | |Spiegelung an der Geraden <math> s </math>||.. | + | |Spiegelung an der Geraden <math> s </math>|| bleibt gleich -[[Benutzer:Pipi Langsocke|Pipi Langsocke]] 13:11, 19. Okt. 2011 (CEST) |
|} | |} | ||
+ | |||
===Aufgabe 1.4=== | ===Aufgabe 1.4=== | ||
::Beweisen Sie Satz 1.2 | ::Beweisen Sie Satz 1.2 |
Version vom 19. Oktober 2011, 12:11 Uhr
Inhaltsverzeichnis |
Aufgabe 1.1
- Definieren Sie für die ebene Geometrie den Begriff Bewegung
- (Definition 1.1)
Eine Bewegung ist eine Abbildung der Ebene auf sich, bei der Streckenlängen erhalten bleiben. Pipi Langsocke 12:45, 19. Okt. 2011 (CEST)
--Peterpummel 12:46, 19. Okt. 2011 (CEST)
Aufgabe 1.2
- Definieren Sie die Begriffe injektiv und surjektiv
injektiv: Es seien eine Ausgangsmenge M und eine Zielmenge N. Injektivität ist dann gegeben, wenn gilt: Jedes Element der Menge M kann einem Element der Zielmenge N eindeutig zugeordnet werden.
surjektiv: Es seien eine Ausgangsmenge M und eine Zielmenge N. Surjektivität ist dann gegeben, wenn gilt: Jedes Element der Zielmenge N besitzt mindestens ein Urbild in der Ausgangsmenge M. Pipi Langsocke 12:48, 19. Okt. 2011 (CEST)
Aufgabe 1.3
- Ergänzen Sie die folgende Tabelle
Abbildung | Umkehrabbildung |
Wurzel(x) , x \ge 0 (Sorry für die Schreibweise!) -Pipi Langsocke 13:11, 19. Okt. 2011 (CEST) | |
-Pipi Langsocke 13:11, 19. Okt. 2011 (CEST) | |
Drehung um Z mit Drehwinkel | Drehung um Z mit dem Drehwinkel . -Pipi Langsocke 13:11, 19. Okt. 2011 (CEST) |
Spiegelung an der Geraden | bleibt gleich -Pipi Langsocke 13:11, 19. Okt. 2011 (CEST) |
Aufgabe 1.4
- Beweisen Sie Satz 1.2
Es seien und zwei Bewegungen.
zu zeigen:
ist eine Bewegung.