Lösung von Aufgabe 1.4 (WS 11 12): Unterschied zwischen den Versionen
Lottta (Diskussion | Beiträge) |
Lottta (Diskussion | Beiträge) |
||
Zeile 11: | Zeile 11: | ||
Hier müssen wir bei der Formulierung aufpassen. Gleichschenklige Dreiecke haben zwei zueinander kongruente Innenwinkel, das ist richtig. Allerdings haben gleichseitige Dreiecke ebenfalls zwei kongruente Innenwinkel. Man müsste sagen, Dreiecke, die genau zwei kongruente Innenwinkel haben, heißen gleichschenklige Dreiecke. Die Definition oben ist in meinen Augen eine Existenzaussage und keine Definition. --[[Benutzer:Schambes|Schambes]] 19:42, 18. Okt. 2011 (CEST) | Hier müssen wir bei der Formulierung aufpassen. Gleichschenklige Dreiecke haben zwei zueinander kongruente Innenwinkel, das ist richtig. Allerdings haben gleichseitige Dreiecke ebenfalls zwei kongruente Innenwinkel. Man müsste sagen, Dreiecke, die genau zwei kongruente Innenwinkel haben, heißen gleichschenklige Dreiecke. Die Definition oben ist in meinen Augen eine Existenzaussage und keine Definition. --[[Benutzer:Schambes|Schambes]] 19:42, 18. Okt. 2011 (CEST) | ||
− | @ Schambes: naja...aber gleichseitige Dreiecke sind ja nunmal auch gleichschenklige. Ist die Definition von Lindi88 dann nicht doch richtig? Oder ist sie dann zu ungenau? | + | |
+ | |||
+ | @ Schambes: naja...aber gleichseitige Dreiecke sind ja nunmal auch gleichschenklige. Ist die Definition von Lindi88 dann nicht doch richtig? Oder ist sie dann zu ungenau? (Lottta, 19.10.11.) |
Version vom 19. Oktober 2011, 13:15 Uhr
Kommentieren Sie den folgenden Definitionsversuch:
Definition: (gleichschenkliges Dreieck)
- Es gibt Dreiecke, die zwei einander kongruente Innenwinkel haben. Diese Dreiecke heißen gleichschenklige Dreiecke.
Das wäre doch eher eine Behauptung, die man beweisen müsste.
Wäre eine mögliche Definition:
Jedes Dreieck, das zwei kongruente Innenwinkel hat, heißt gleichschenkliges Dreieck.--Lindi 88 17:02, 18. Okt. 2011 (CEST)
Hier müssen wir bei der Formulierung aufpassen. Gleichschenklige Dreiecke haben zwei zueinander kongruente Innenwinkel, das ist richtig. Allerdings haben gleichseitige Dreiecke ebenfalls zwei kongruente Innenwinkel. Man müsste sagen, Dreiecke, die genau zwei kongruente Innenwinkel haben, heißen gleichschenklige Dreiecke. Die Definition oben ist in meinen Augen eine Existenzaussage und keine Definition. --Schambes 19:42, 18. Okt. 2011 (CEST)
@ Schambes: naja...aber gleichseitige Dreiecke sind ja nunmal auch gleichschenklige. Ist die Definition von Lindi88 dann nicht doch richtig? Oder ist sie dann zu ungenau? (Lottta, 19.10.11.)