Lösung von Aufgabe 9.2P (SoSe 12)
Beweisen Sie die Geradentreue der Geradenspiegelung. Nutzen Sie für den Beweis die Halbgeradentreue der Geradenspiegelung.
ich versteh nicht ganz, was wir beweisen sollen:
wenn wir die halbgeradentreue bewiesen haben, müssen wir die geradentreue doch eigentlich gar nicht mehr beweisen, oder?
eine gerade ab ist doch die vereinigungsmenge der beiden halbgeraden ab+ und ab-
wenn beide halbgeradentreu sind, ist doch die gerade geradentreu...--Studentin 00:47, 25. Jun. 2012 (CEST)
Ja, dann müssen wir evtl einfach noch die Halbgerade AB+ und AB- zusammenfügen und somit zeigen, dass A´B´ existiert. Oder?--PippiLotta 13:57, 25. Jun. 2012 (CEST)
Ja. Die "Geradentreue" müsste dann die Vereinigungsmenge zweier Halbgeraden sein! Aber ich glaube hier müssen wir aufpassen, denn AB+ und AB- sind zwar Halbebenen, aber beide haben den Punkt A. Also müssten wir zwei Halbebenen vereinigen bspw.: und --Honeydukes 15:00, 25. Jun. 2012 (CEST)