Lösung von Aufgabe 12.02 WS 12 13

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Aufgabe 12.02

Beweisen Sie: Die Mittelsenkrechten eines Dreiecks schneiden sich in genau einem Punkt.
Dass sich zwei Mittelsenkrechten eines Dreieck in genau einem Punkt schneiden dürfen Sie voraussetzen.



Lösung User ...

12.02.jpg --Yellow 21:12, 26. Jan. 2013 (CET) Hallo ich bin mir nicht sicher ob wir hier sagen dürfen dass S=Mittelpunkt ist. Aber kann man ja mit Mittelsenkrchtenkriterium begründen

Lösung User Caro44

Caro44 Dreieck drei drei.JPG

--Caro44 13:16, 30. Jan. 2013 (CET)

Frage Hauler

Stimmen mit Lösung von Caro44 überein. Frage die aufkam:

Wann nimmt man die Definition, wann nimmt man die Existenz und Eindeutigkeit ( in diesem Fall Mittelpunkt, Mittelsenkrechte), wann nimmt das Kriterium als Begründung?

Gedanken von uns: Im Beweis benutzen wir Definition nur, wenn Existenz und Eindeutigkeit bewiesen wurde. Kann man sich somit Existenz und Eindeutigkeit sparen und immer Definition schreiben? Weiter folgend kam diese Frage auch bei Definition oder Kriterium Mittelsenkrecht auf. Kriterium setzt sich ja aus beiden Definitionen zusammen!

--Hauleri 15:32, 30. Jan. 2013 (CET)