Beweisen SoSe 13

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Implikationen

Beispiele

Beispiel 1

Borussia Dortmund logo.svg
Wenn der BVB im Finale der Champions League das erste Tor des Spieles schießt, dann gewinnt er die Champions League der Saison 2012/13.

Beispiel 2

Wenn ein Trapez ein Rechteck ist, dann sind sein Diagonalen kongruent zueinander.

Beispiel 3

Wenn ein Boxer während des Kampfes seinem Gegner den Rücken zukehrt, hat er den Kampf verloren.

Beispiel 4

Wenn zwei Winkel Stufenwinkel an geschnittenen Parallelen sind, dann sind sie kongruent zueinander.

Grundlegender Aufbau

  • Wenn Bedingung a, dann Behauptung b.
  • Aus a folgt b.
  • a \Rightarrow b

Zusammenhang zur hinreichenden Bedingung

Ist die Aussage a \Rightarrow b wahr, so ist die Bedingung der Implikation hinreichend dafür, dass die Behauptung b gilt.

"Versteckte" Implikationen

Beispiele

Beispiel 1: Stufenwinkelsatz

Ohne Wenn-Dann
Stufenwinkel an geschnittenen Parallelen sind kongruent zueinander
Wenn-Dann-Form
Wenn zwei Winkel Stufenwinkel an geschnittenen Parallelen sind, dann sind sie kongruent zueinander.
Voraussetzung
  1. die beiden Winkel sind Stufenwinkel
  2. an geschnittenen Parallelen
Behauptung
die beiden Winkel sind kongruent zueinander

Beispiel 2: Innenwinkelsatz für Dreiecke

Ohne Wenn-Dann
In jedem Dreieck beträgt die Summe der Größen seiner Innenwinkel 180°.
Wenn-Dann-Form
Wenn ein n-Eck ein Dreieck ist, dann beträgt die Summe der Größen seiner Innenwinkel 180°.
Voraussetzung
Das betrachtetet n-Eck ist ein Dreieck
Behauptung
Die Summe der Größen seiner Innenwinkel beträgt 180°.

Beispiel 3: Umkehrung des Thalessatzes

Ohne Wenn-Dann
Der Mittelpunkt des Umkreises eines rechtwinkligen Dreiecks liegt auf der längsten Seite dieses Dreiecks.
Wenn-Dann-Form
Wenn ein Dreieck rechtwinklig ist, dann liegt der Mittelpunkt seines Umkreises auf der längsten seiner Seiten.
Voraussetzung
Das betrachtete Dreieck ist rechtwinklig.
Behauptung
Der Mittelpunkt seines Umkreises liegt auf der längsten seiner Seiten.

Implikationen als mathematische Sätze

mathematische Sätze

Unter einem mathematischen Satz (im folgenden kurz Satz) versteht man eine mathematische Aussage, die wahr ist.

Implikationen als Sätze

In der Regel werden Sätze als Implikationen formuliert.
Die Voraussetzung der Implikation ist dann eine hinreichende Bedingung für die Behauptung der Implikation.

Die Implikation einer Behauptung und die Implikation als Behauptung (umgangssprachlich)

Der Begriff der Behauptung wird natürlich auch umgangssprachlich verwendet. Meine Erfahrung lehrt mich, dass Novizen der mathematischen Logik diesbezüglich zu Verwechslungen neigen:

Eine gewagte Behauptung

Wenn der FC Barcelona ohne Messi spielt, dann halbiert sich seine Spielstärke.
Fans des FC Barcelona werden die gesamte Implikation (also die gesamte Aussage Wenn der FC Barcelona ohne Messi spielt, dann halbiert sich seine Spielstärke.) als eine gewagte Behauptung ansehen.
Demgegenüber ist die Aussage Barcelona spielt ohne Messi die Voraussetzung der Implikation und die Aussage die Spielstärke halbiert sich die Behauptung der Implikation.

Notwendigkeit des Beweises eines Satzes

Obige Implikation hinsichtlich der spielerischen Stärke des FC Barcelona in Anhängigkeit der Verfügbarkeit des Weltfußballers Messi wird nur schwer zu beweisen sein und kann damit nicht als Satz im mathematischen Sinne verstanden werden. Mathematische Sätze sind wahre Aussagen und als solche zu beweisen.

Beweisbeispiele

Beispiel 1: Der Scheitelwinkelsatz

Vorab

Es sei bereits klar, dass Nebenwinkel supplementär sind (sich zu 180° ergänzen).
Natürlich seien die Begriffe Scheitelwinkel und Nebenwinkel sauber definiert.

Der Satz

Satz: (Scheitelwinkelsatz)
Wenn zwei Winkel \alpha und \beta Scheitelwinkel sind, so haben sie dieselbe Größe.

Der Beweis

Beweis Scheitelwinkelsatz.png