Lösung von Aufgabe 11.1P (SoSe 14)

Aus Geometrie-Wiki
Version vom 14. Juli 2014, 10:13 Uhr von Tutorin Anne (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Beweisen Sie Satz IX.1:
Gegeben seien zwei Spiegelgeraden a und b mit einem gemeinsamen Schnittpunkt S. Wir betrachten die Verkettung S_{a}\circ S_{b} . Jeder Punkt P liegt dabei mit seinem Bildpunkt P''=S_{a}\circ S_{b}(P) auf einem Kreis k um S.
Die Tabelle - damit der Beweis übersichtlich ist - kann gefüllt werden. Muss aber nicht verwendet werden!--Tutorin Anne (Diskussion) 11:13, 14. Jul. 2014 (CEST)


Voraussetzung (V. hier eintragen)
Behauptung (Beh. hier eintragen)


Nr. Beweisschritt Begründung
1 (Schritt 1 hier) (Begründung 1)
2 (Schritt 2) (Begründung 2)
3 (Schritt) (Begründung)
4 (Schritt) (Begründung)