Umkehrung von Implikationen SoSe 2018

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Allgemein

Wir betrachten die Implikation a \Rightarrow b.
Die Implikation b \Rightarrow a ist die Umkehrung der Implikation a \Rightarrow b.
Wir vertauschen also die Rolle von Voraussetzung und Behauptung der Ausgangsimplikation.
Beide Implikationen, Ausgangsimplikation und zugehörige Umkehrung, müssen nicht zwangsläufig denselben Wahrheitsgehalt haben.

Beispiele

Beispiel 1

Implikation

Wenn eine Zahl 9 ein Teiler von a ist, dann ist 3 auch ein Teiler von a.
Voraussetzung: 9 \mid a
Behauptung: 3 \mid a
Die Implikation ist wahr, wie der folgende Beweis zeigt:
Wir übersetzten die Voraussetzung: 9 \mid a
bedeutet: \exists n \in \mathbb{Z}: n \cdot 9 = a.
Wir übersetzen die Behauptung: 3 \mid a bedeutet: \exists m \in \mathbb{Z}: 3  \cdot m= a.