Übungsaufgaben zur Algebra, Serie 3 SoSe 2018
Aus Geometrie-Wiki
Version vom 5. Mai 2018, 15:06 Uhr von *m.g.* (Diskussion | Beiträge)
Aufgabe 3.1Es seien und zwei Restklassen bzgl. des selben Moduls . Beweisen Sie die Repräsentantenunabhängigkeit Restklassenaddition: Aufgabe 3.2Auf der Menge aller Brüche definieren wir deine Relation quotientengleich : Aufgabe 3.3Die Relation quotientengleich ist eine Äquivalenzrelation auf der Menge aller Brüche und zieht damit eine Klasseneinteilung nach sich. Die Menge aller Äquivalenzklassen nach ist die Menge der gebrochenen Zahlen . Eine gebrochene Zahl ist damit eine Äquivalenzklasse nach der Relation , d.h. der Bruch gehört genau dann zu , wenn gilt. Beweisen Sie die Repräsentantenunabhängigkeit der Multiplikation gebrochener Zahlen. Aufgabe 3.4Aufgabe 3.5Aufgabe 3.6Aufgabe 3.7Aufgabe 3.8Aufgabe 3.9Aufgabe 3.10 |