Übungsaufgaben zur Algebra, Serie 4 SoSe 2018
Aufgabe 4.1Wir betrachten auf der Menge der natürlichen Zahlen, die Relationen Teiler und echter Teiler. Aufgabe 4.2Die Gleichung ist eine Linearkombination der Gleichung , wenn eine Zahl derart existiert,
dass Aufgabe 4.3Es sei die Menge aller Gleichungen vom Typ . sei die Menge aller Äquivalenzklassen , in die durch die Äquivalenzrelation Gleichung a ist Linearkombination von Gleichung b eingeteilt wird. Wir definieren auf die folgende Operation : . Beweisen Sie: ist Gruppe. Aufgabe 4.4Aufgabe 4.5Aufgabe 4.6Aufgabe 4.7Aufgabe 4.8Aufgabe 4.9Aufgabe 4.10 |