Lösung von Aufg. 10.2
Aus Geometrie-Wiki
Version vom 19. Januar 2011, 16:17 Uhr von Schnirch (Diskussion | Beiträge)
Definition V.9 : (noch mehr Senkrecht)
- Eine Gerade und eine Strecke stehen senkrecht aufeinander, wenn die und die Gerade senkrecht aufeinander stehen.
- Eine Gerade und eine Strecke stehen senkrecht aufeinander, wenn die und die Gerade senkrecht aufeinander stehen.
Ergänzen Sie:
- Eine Strecke und eine Strecke stehen senkrecht aufeinander, wenn ... .
- Eine Gerade und eine Ebene stehen senkrecht aueinander, wenn es in ... .
- Eine Gerade und eine Ebene stehen senkrecht aueinander, wenn es in ... .
Eine Strecke und eine Strecke stehen senkrecht aufeinander, wenn auch die Geraden und senkrecht aufeinander stehen.
die Def. ist korrekt, das Wörtchen "auch" können Sie allerdings weglassen.--Schnirch 15:16, 19. Jan. 2011 (UTC)
Eine Gerade g und eine Ebene stehen senkrecht aufeinander, wenn es in zwei Geraden gibt, die sich schneiden und jeweils senkrecht zu g stehen.
--Engel82 15:49, 15. Dez. 2010 (UTC)
diese Definition von Engel82 ist korrekt!
... wenn es in zwei voneinander verschiedene Geraden gibt, die senkrecht zu g stehen. --jp1234 23:35, 21. Dez. 2010 (UTC)
wenn die beiden Geraden f und h in der Ebene parallel zueinander stehen, dann gebe es eine dritte Gerade g in der Ebene,
die senkrecht auf die beiden Geraden f und h stehen würde und nach Ihrer Definition damit senkrecht auf der Ebene stünde.
Da unsere Gerade g aber in der Ebene liegt, stimmt dies offensichtlich nicht!--Schnirch 15:16, 19. Jan. 2011 (UTC)