Favorites

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
\textstyle \frac{x}{y} \frac{x}{y}
\textstyle \sum_x^n \sum_{x=1}^{n}
\textstyle \prod_x^n \prod^{x=1}_{n}
\textstyle \int_a^b \int_{a}^{b} f (x)\,dx
\textstyle \frac{\partial x}{\partial y} \frac{\partial x}{\partial y}
\textstyle \sqrt x \sqrt{x}
\textstyle \sqrt[3]{x} \sqrt[3]{x}
\textstyle f(x) f(x)
\lim \lim_{x\to\infty}
***
\sin \sin (x)
\cos \cos (x)
\tan \tan (x)
\log \log (x)
\ln \ln (x)
***
\le \le
\ge \ge
\neq \neq
\approx \approx
\equiv \equiv
\propto \propto
\infty \infty
***
\alpha \alpha
\beta \beta
\gamma \gamma
\delta \delta
\epsilon \epsilon
\zeta \zeta
\eta \eta
\theta \theta
\vartheta \vartheta
\kappa \kappa
\lambda \lambda
\mu \mu
\xi \xi
\pi \pi
\rho \rho
\sigma \sigma
\tau \tau
\phi \phi
\varphi \varphi
\chi \chi
\psi \psi
\omega \omega
***
\Rightarrow \Rightarrow
\rightarrow \rightarrow
\Leftarrow \Leftarrow
\leftarrow \leftarrow
\Leftrightarrow \Leftrightarrow
\vec{x} \vec{x}
***
( \left(
) \right)
[ \left[
] \right]
\{ \left{
\} \right}
\textstyle {n \choose k} {n \choose k}
***
\Box \Box
\forall \forall
\exists \exists
\in \in
\not\in \not\in
***
\ a \wedge b \ a \wedge b
\ a \vee b \ a \vee b
\ a \Rightarrow b \ a \Rightarrow b
\ a \Leftrightarrow b \ a \Leftrightarrow b
***
\neg A \neg A
\exist n\in M \exist n\in M
\forall n\in M \forall n\in M
\ A \cap B \ A \cap B
\ A \cup B \ A \cup B
\ A \setminus B \ A \setminus B
***
\overline{AB} \overline{AB}
\overrightarrow{AB} \overrightarrow{AB}
AB \right| AB \right|
\ AB^{+} \ AB^{+}
\ AB^{-} \ AB^{-}
\operatorname{Zw} (A, Q, P) \operatorname(Zw) (A, Q, P)
,,,\} ,,,\}
***
\angle ABC \angle ABC
\ g \perp \ h \ g \perp \ h
\ g \not\perp \ h \ g \not\perp \ h
b b
b b
\operatorname{koll}(A, B, C) \operatorname{koll}(A, B, C)
\operatorname{komp}(A, B, C) \operatorname{komp}(A, B, C)
\alpha \cong \beta \alpha \cong \beta
\alpha \equiv \beta \alpha \equiv \beta
\frac{x} {y} \frac{x} {y}
x_{i} x_{i}
x^{i} x^{i}
\begin{pmatrix} x \\ y \\ z \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}