Zu den Lösungsversuchen
Inhaltsverzeichnis |
Aufgabe 3.1
(alles in ein und derselben Ebene)
Es sei ein Kreis mit dem Mittelpunkt und dem Radius . Ferner sei eine Gerade, die durch den Mittelpunkt von k geht. Schließlich sei der gemeinsame Schnittpunkt der Senkrechten in auf mit . Wir definieren eine Abbildung von auf : . Ist fixpunktfrei?
Es scheint sich daraufhin herauszulaufen, dass die Schnittpunkte A und B aus Fixpunkte bzgl. sind. --Flo60 16:58, 13. Nov. 2011 (CET)
Aufgabe 3.2
Es sei . Wir definieren auf die folgende Abbildung : . Jedes Element des fassen wir als Punkt auf. Hat Fixpunkte? Wenn ja welche? (Geogebra hilft)
Also auch hier sieht es so aus, als hätten eine unendliche Anzahl von Fixpunkten oder anders ausgedrückt: sin(x) besitzt bzgl. identische Werte für alle .
Allerdings habe ich mich persönlich in meinem Leben bisher wenig mit Sinusfunktionen auseinandergesetzt (kurz auf der Realschule um am Dreieck herumzurechnen). Und einfach nur Funktionen im Geogebra eingeben ist auch nicht so der Renner, wenn man nicht weiß, woher sie kommen. Vielleicht kann mal jemand eine Applikation einstellen, die den ganzen Spaß verdeutlicht - dann braucht man nicht lange in der Literatur herumzusuchen.
Aufgabe 3.3
Unter der Menge aller Punkte wollen wir die Menge aller Pixel eines LCD-Bildschirms mit FullHD-Auflösung (1920 x 1080) verstehen. Jedes dieser Pixel hat bezüglich eines bildschirmeigenen Koordinatensystems die Koordinaten . Wir definieren auf den Pixeln unseres Bildschirms die folgende Abbildung : . Wie groß ist die Wahrscheinlichkeit, dass einen Fixpunkt hat?
1 | 2 | |
Nr. | Beschreibung des Schrittes | Begründung der Korrektheit des Schrittes |
---|---|---|
1. | gilt, wegen der Relation zwischen. | |
2. | Relation zwischen bleibt nach der Ausführung der Bewegung erhalten. | |
3. | --> P=P' | folgt aus (1.) und (2.) und der Vss, dass A und B Fixpunkte sind. |
Deshalb wird auch Punkt P bei der Bewegung auf sich selbst abgebildet.
(Ich bin mir nicht sicher, ob ich alles bedacht habe, vielleicht kann noch jemand was dazu sagen/korrigieren. Warum bei der Tabelle über der Spaltenbeschriftung noch 1. und 2. steht ist mir auch schleierhaft.) Pipi Langsocke 12:05, 10. Nov. 2011 (CET)
Aufgabe 3.5
Beweisen Sie: Wenn drei nicht kollineare Punkte Fixpunkte der Bewegung sind, so ist die identische Abbildung.