Übung Aufgaben 5 (SoSe 12)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Aufgaben zum Abstand

Aufgabe 4.1

Satz:

Von drei paarweise verschiedenen Punkten \ A, B und \ C ein und derselben Geraden \ g liegt genau einer zwischen den beiden anderen.

Beweisen Sie diesen Satz.


Lösung von Aufgabe 4.1 (SoSe_12)

Aufgabe 4.2

Zeigen Sie, dass für drei paarweise verschiedene Punkte \ A, B und \ C gilt:
\operatorname Zw (A, B, C) \Rightarrow \overline{AB}  	\subset \overline{AC}

Tipps zu Aufgabe 4.2 (SoSe_12)

Lösung von Aufgabe 4.2 (SoSe_12)

Aufgabe 4.3

Zeigen Sie, dass für drei paarweise verschiedene Punkte \ A, B und \ C gilt:
Wenn  C \in \ AB^{+} und \left| AB \right| < \left| AC \right| dann gilt \operatorname Zw (A, B, C)


Lösung von Aufgabe 4.3 (SoSe_12)


Aufgabe 4.4

Beweisen Sie: Zu jeder Strecke \overline{AB} existiert genau eine Strecke \overline{AC} auf \ AB^{+} mit \left| AB \right| = \frac{1}{4} \left| AC \right| und \overline{AB}  	\subset \overline{AC}
Tipps zu Aufgabe 4.4 (SoSe_12)

Lösung von Aufgabe 4.4 (SoSe_12)

Weitere Aufgaben zur Inzidenz

Aufgabe 4.5

Beweisen Sie: Je vier nicht komplanare Punkte sind paarweise verschieden (Hinweis: Nutzen Sie bei der Beweisführung die Sätze aus Aufgabe 3.3 und 3.5).

Aufgabe 4.6

Es sei \ g eine Gerade und \ P ein Punkt, der nicht zu \ g gehört. Beweisen Sie mittels der Axiome der Inzidenz: Es gibt genau eine Ebene \ \epsilon, die sowohl alle Punkte von \ g als auch den Punkt \ P enthält.

Lösung von Aufgabe 4.6_S (SoSe_12) Lösung von Aufg. 4.5 (SoSe_12)