Umkehrung des Stufenwinkelsatzes (WS 12 13)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche


Inhaltsverzeichnis

Stufenwinkel, Wechselwinkel, entgegengesetzt liegende Winkel

In welchen Fällen handelt es sich um....

Stufenwinkel
Wechselwinkel
entgegengesetzt liegende Winkel?

Die Umkehrung des Stufenwinkelsatzes

Satz X.1: (Umkehrung des Stufenwinkelsatzes)
Es seien \ a und \ b zwei nicht identische Geraden, die durch eine dritte Gerade \ c jeweils geschnitten werden. Es seien ferner \ \alpha und \ \beta zwei Stufenwinkel, die bei dem Schnitt von \ c mit \ a und \ b entstehen mögen.
Wenn die beiden Stufenwinkel \ \alpha und \ \beta kongruent zueinander sind, dann sind die Geraden \ a und \ b parallel zueinander.
Beweis von Satz X.1: (Umkehrung des Stufenwinkelsatzes)

Es seien \ a, b und \ c drei paarweise nicht identische Geraden. Die Gerade \ c möge \ a in dem Punkt \ A und die Gerade \ b in dem Punkt \ B schneiden. \ \alpha und \ \beta sei ein Paar von Stufenwinkeln, welches bei dem Schnitt von \ a und \ b mit \ c entstehen möge.

Voraussetzung:

(i) \ \alpha \tilde {=}\beta

Umkehrung stufenwinkelsatz 01.png

Behauptung:

\ a \parallel b

Annahme:

a\not\parallel b

Den Rest können Sie selbst!