Übungsaufgaben zur Algebra, Serie 2 SoSe 2018

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Aufgabe 2.1

Gegeben sei DD_\Delta:=\left [ \left \{  \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix},  \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} \sqrt{3} & -\frac{1}{2} \sqrt{3}  \\ \end{pmatrix}, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right \}, \circ \right ].
~

Bestimmen Sie a, b, c, d \in \mathbb{R} derart, dass DD_\Delta eine Gruppe ist. Die Operation \circ ist dabei als die normale Matrizenmultiplikation zu verstehen.

Aufgabe 2.2