Lösung von Aufg. 12.6

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Aufgabe 12.6

Beweisen Sie den Stufenwinkelsatz.

Vor: a//b
Beh: \alpha \cong\beta

Annahme: \alpha ist nicht kongruent zu \beta

1) Es existiert genau eine Gerade h für die gilt:___________________________WInkelkonstruktionsaxiom
\alpha1 \cong\beta
2) h//b________________________Umkehrung des Stufenwinkelsatzes und 1)
3) Die Gerade b hat zwei Parallelen a und h______________________ Vor. und 2) Widerspruch zum EPA
4) a=h___________________________2)
5) Annahme ist zu verwerfen
6) Behauptung stimmt --Engel82 17:57, 19. Jan. 2011 (UTC)


Musst du für diesen Beweis nicht erstmal die Umkehrung des Stufenwinkelsatz beweisen...das haben wir ja noch nicht gemacht?!