Lösung von Aufg. 12.3 SS11
Beweisen Sie Satz VII.6 a:
- Wenn ein Punkt zu den Endpunkten der Strecke jeweils ein und denselben Abstand hat, so ist er ein Punkt der Mittelsenkrechten von .
Skizze dazu: (--Tutorin Anne 17:33, 5. Jul. 2011 (CEST))
(davor sollte man noch sagen, das hier ein gleichschenkliges Dreieck vorliegt > wo sollen sonst Basiswinkel vorliegen?)
--Peterpummel 17:47, 3. Jul. 2011 (CEST)
Der Beweis ist gut, allerdings solltest du wie Phil den 2. Fall nicht vergessen, denn dann ergeben sich ja keine Dreiecke.--Tutorin Anne 17:33, 5. Jul. 2011 (CEST)
Lösungsvorschlag 2:
Man muss in zwei Fälle unterscheiden:
5)
6) Nicht einfach Schritte oder Vorausetzung wiederholen!
(8, Def. Nebenwinkel, Supplementaxiom)
(8)
(10, Def. Mittelpunkt, 9, Def. Mittelsenkrechte)
(9, 10, 11)
Ich denke, auch so kann Fall I beweisen werden. Scheint mir aufwendiger, aber auch richtig. Gut!--Tutorin Anne 17:57, 5. Jul. 2011 (CEST)
(Annahme 2. Fall) (Hier verstehe ich nicht, was du damit zeigen willst. --Tutorin Anne 17:57, 5. Jul. 2011 (CEST))
(Def. Mittelpunkt, 1)
(2, Def. Mittelsenkrechte)---phil- 15:04, 5. Jul. 2011 (CEST)