Lösung von Zusatzaufgabe 6.1 S (SoSe 12)
Aus Geometrie-Wiki
Version vom 4. Juni 2012, 19:03 Uhr von RitterSport (Diskussion | Beiträge)
Zusatzaufgabe 6.1
Es sei eine Gerade und ein Punkt, der nicht zu gehört. Beweisen Sie mittels der Axiome der Inzidenz: Es gibt genau eine Ebene , die sowohl alle Punkte von als auch den Punkt enthält.
Lösungsvorschlag:
Voraussetzung: Gerade g, Punkt P, P nicht Element von g
Behauptung: Es existiert eine Ebene, die sowohl g als auch P enthält.
Schritt | Warum darf ich den Schritt machen? |
---|---|
Es existiert X,Y.X,Y Element g | I.2 |
nkoll(X,Y,P) | (1), Vor. |
Es existiert eine Ebene.X,Y,P Element der Ebene | (2), I.4 |
Durch Axiom I.4 wären Existenz (Zu drei nicht kollinearen Punkten gibt es genau eine Ebene...) und Eindeutigkeit (... genau eine Ebene...) bewiesen.
--RitterSport 20:02, 4. Jun. 2012 (CEST)