Lösung von Aufgabe 4
Aus Geometrie-Wiki
Version vom 2. Juni 2010, 11:48 Uhr von Maude001 (Diskussion | Beiträge)
Satz I: Je drei nicht kollineare Punkte sind paarweise verschieden.
- Wir formulieren Satz I neu und beginnen mit „Es seien
,
und
drei Punkte.“ Ergänzen Sie: „Wenn
,
und
… , dann … .“
- Beweisen Sie Satz I indirekt.
- Bilden Sie die Kontraposition von Satz I.
- Beweisen Sie auch die Kontraposition von Satz I.
- Formulieren Sie die Umkehrung von Satz I.
- Gilt auch die Umkehrung von Satz I?
Lösung:
1. Es seien ,
und
drei Punkte. Wenn
,
und
nicht kollinear sind , dann sind sie paarweise verschieden.
2. Voraussetzung: Es seien ,
und
drei Punkte mit nkoll(
,
,
).
Annahme: identisch
o.B.d.A.
Schritt | Begründung |
1) Durch die Punkte ![]() ![]() 2) ![]() ![]() ![]() 3) ![]() ![]() ![]() ![]() 4) Widerspruch zur Voraussetzung |
1) Axiom I/1 2) Identität 3) Definition: (kollinear) |
3. Sind drei Punkte nicht paarweise verschieden, so sind sie kollinear.
5. Sind drei Punkte paarweise verschieden, so sind sie nicht kollinear.
6. Nein.
4. Voraussetzung: ,
und
sind nicht paarweise verschieden.
Annahme: nkoll (,
,
)
I. durch die Punkte und
geht genau eine Gerade g. ->Axiom I/1
II. ist kein Element von g -> Annahme
III. nicht identisch
und
nicht identisch
-> I. und II.
IV. Widerspruch zur Voraussetzung