Der Zusammenhang von Seitenlängen und Winkelgrößen im Dreieck (SoSe 12)

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Satz IX.2: (Der größeren Seite liegt der größere Winkel gegenüber)
Es sei \overline{ABC} ein Dreieck mit den schulüblichen Bezeichnungen.
\left| a \right| >\left| b \right| \Rightarrow \left| \alpha \right| > \left| \beta \right|
Beweis von Satz IX.2

Es sei \overline{ABC} ein Dreieck.

Voraussetzung:
\left| BC \right| > \left| AC \right| bzw. \left| a\right| > \left| b \right|

Behauptung:
\left| \alpha \right| > \left| \beta \right|

Die folgenden Hilfskonstruktionen liefern die Beweisidee (kommentieren Sie die Abbildungen und führen Sie den Beweis):

Seite winkel 01.png Seite winkel 02.png
Frage zur Beweisführung:
In der heutigen Geometrie Veranstaltung haben wir den Schritt (3) B' \in I \left( \alpha \right) anhand der Konvexität begründet..
Mich würde interessieren, ob ich es auch anhand vom Lemma 1 begründen kann, da ich mir damit einfacher tue..!??
Lemma 1 besagt doch folgendes:
Gegeben seien drei nicht kollineare Punkte (hier A, B, C / nach Voraussetzung). Wenn B' (nach Konstruktion..\exists B' \in \ CB^{+} ) ein Punkt der offenen Strecke (hier: \overline{CB} / nach Konstruktion) ist, dann liegt der Strahl (hier \ AB'^{+}) vollständig im Inneren von \angle BAC .
Also müsste doch bei Schritt (3), Lemma 1 als Begründung korrekt sein..!?
--Tchu Tcha Tcha 12:21, 5. Jul. 2012 (CEST)

Satz IX.3: (Dem größeren Winkel liegt die größere Seite gegenüber)
Es sei \overline{ABC} ein Dreieck mit den schulüblichen Bezeichnungen.
\left| \alpha \right| > \left| \beta \right|\Rightarrow \left| a \right| >\left| b \right|
Beweis von Satz IX.3

Übungsaufgabe