Lösung von Aufg. 11.2 S

Aus Geometrie-Wiki
Version vom 5. Juli 2012, 12:04 Uhr von Nummero6 (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Lösungsversuch Nummero6/Tchu Tcha Tcha:
Skizze folgt..
Voraussetzung: Dreieck (\overline{ABC} )
Annahme: mindestens 2 Innenwinkel sind spitze Winkel (Größe: kleiner 90)
Behauptung: genau 1 Innenwinkel ist ein spitzer Winkel
oBdA.: \left| \angle ABC  \right| = \left| \angle BAC  \right| = 90

Nach dem "Schwachen Außenwinkelsatz" gilt: \left| \beta'  \right| groesser \left| \angle BAC  \right| und \left| \beta' \right| groesser \left| \angle ACB  \right|.
Da \beta' der NW von \angle ABC ist und nach dem Supplementaxiom und Def supplementär gilt:
NW_1+NW_2= 180 ,und daraus nach Rechnen in R folgt, dass \left| \beta' \right|= \left| \angle ABC  \right| = 90 ist,
kann \left| \beta' \right| nicht größer als \left| \angle ABC  \right| sein..
Widerspruch zur Annahme. Behauptung stimmt. qed
--Tchu Tcha Tcha 13:04, 5. Jul. 2012 (CEST)