Lösung von Aufgabe 10.4P (SoSe 12)
Aus Geometrie-Wiki
Version vom 10. Juli 2012, 07:52 Uhr von Tutorin Anne (Diskussion | Beiträge)
Beweisen Sie Satz IX.3:
Bei einer Punktspiegelung ist der Schnittpunkt S der beiden Spiegelgeraden a und b Mittelpunkt der Strecke , mit .
Vor.: a verkettet b (P)=P ´´, a geschnitten b = S
Beh: S ist Mittelpunkt von PP``, also: PS=P´´S
1. In der Vorlesung haben wir bereits bewiesen: Jeder Punkt liegt mit seinem Bildpunkt P´´= a verkettet b (P) auf einem Kreis um S. Also SP=SP´´ (Def. Mittelpunkt)
2. P und P´´ sind e K, PSP´´ ist Durchmesser
nur weil P und P´´ auf dem Kreis liegen ist die Verbindung ja noch kein Durchmesser. Der Beweis ist nur richtig, wenn du diesen Schritt auch begründen kannst.--Tutorin Anne 15:26, 2. Jul. 2012 (CEST)
Das kann man doch mit Hilfe der Eigenschaft "streckentreue der Geradespiegelung" erkläre oder? so wäre das die Strecke P'S gleich der strecke P``S und damit liegt S in der Mitte der Strecke PP``?[[]]
das könnte auch eine Strecke mit einem "Knick" bei S sein. Oder nicht?--Tutorin Anne 18:32, 2. Jul. 2012 (CEST)
3. S ist Mittelpunkt von PP´´ (2.1.) q.e.d.--Geogeogeo 13:17, 2. Jul. 2012 (CEST)
Es fehlt Ihnen noch ein Schritt ganz am Anfang. Wir wissen doch, dass wir das Achsenkreuz um S drehen können wie wir wollen ohne etwas an der Abbildung zu ändern. Nutzen Sie diese Eigenschaft um die Achsen möglichst sinnvoll (im Sinne der Vereinfachung) zu platzieren.--Schnirch 15:22, 9. Jul. 2012 (CEST)